Question

Consider the homeomorphism $f: \mathbf{H} \rightarrow \mathbf{H}$ given by $f(z)=z+\operatorname{Re}(z)$. Prove that the hyperbolic length of a path in \mathbf{H} (measured with respect to the element of arc-length $\left.\frac{1}{\operatorname{Im}(z)}|\mathrm{dz}|\right)$ is not invariant under f.
Does there exist any non-zero real valued function g so that the hyperbolic length of a path in \mathbf{H} (measured with respect to the element of arc-length $\left.\frac{1}{\operatorname{Im}(z)}|\mathrm{dz}|\right)$ is not invariant under $f(z)=z+g(\operatorname{Re}(z))$?

Answer

Consider $f+o:[0,1] \longrightarrow \mathbf{H}, f_{0}(t)=t+(1+t) i \quad f_{0}^{\prime}(t)=1+i$
$\operatorname{length}_{\mathbf{H}}\left(f_{0}\right)=\int_{0}^{1} \frac{\sqrt{2}}{1+t} d t=\sqrt{2} \ln (2)$.
$f \circ f_{0}(t)=f_{0}(t)+\operatorname{Re}\left(\mathrm{f}_{0}(\mathrm{t})\right)=2 \mathrm{t}+(1+\mathrm{t}) \mathrm{i} \quad\left(\mathrm{f} \circ \mathrm{f}_{0}\right)^{\prime}(\mathrm{t})=2+\mathrm{i}$.
$\operatorname{length}_{\mathbf{H}}\left(f \circ f_{0}\right)=\int_{0}^{1} \frac{\sqrt{5}}{1+t} d t=\sqrt{5} \ln (t) \neq$ length $_{\mathbf{H}}\left(f_{0}\right)$.
Suppose now that there exists $g: \mathbf{R} \longrightarrow \mathbf{R}$ so that, for all paths $f_{0}:[a, b] \longrightarrow$ H so that

$$
\operatorname{length}_{\mathbf{H}}\left(f_{0}\right)=\operatorname{length}_{\mathbf{H}}\left(f \circ f_{0}\right)
$$

Write

$$
\begin{aligned}
& f_{0}(t)=x(t)+i y(t) \\
& f \circ f_{0}(t)=x(t)+g(x(t))+i y(t) \\
& \text { length }_{\mathbf{H}}\left(f_{0}\right)=\int_{a}^{b} \frac{1}{y(t)} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& \text { length }_{\mathbf{H}}\left(f \circ f_{0}\right)=\int_{a}^{b} \frac{1}{y(t)} \sqrt{\left(x^{\prime}(t)\right)^{2}\left(1+s^{\prime}(x(t))\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
\end{aligned}
$$

consider f_{0} with $y(t)=1$ so that $y^{\prime}(t)=0$, hence

$$
\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}} d t=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}\left(1+g^{\prime}(x(t))\right)^{2}} d t
$$

using an argument similar to the one given in class, since this is true for all intervals $[a, b] \subseteq \mathbf{R}$ and all g, we have that $g^{\prime}(x)=0$ all x and so g is constant (and g constant is a Möbius transformation).
[Actually, have $\left(1+g^{\prime}(x(t))\right)^{2}=1$ so either
$1+g^{\prime}(x(t))=1$ in which case $g^{\prime}(x(t))=0$ and so g is constant, or
$1+g^{\prime}(x(t))=-1$ so $g^{\prime}(x(t))=-2$ and so $g(x)=2 x+c$
So, either g is constant (Möbius transformation) or $g(x)=-2 x+c$ in which case $z+g(\operatorname{Re}(z))=-\bar{z}+c$ again in $\operatorname{Möb}(\mathbf{H})$.]

