## Question

For integers $m \geq 0$, consider the paths $g_{m}:[0,1] \rightarrow \mathbf{H}$ given by

$$
g_{m}(t)=t+\left(t^{3 m}+1\right) i .
$$

Write down the integral giving the hyperbolic length of the curve $g_{m}([0,1])$ in $\mathbf{H}$. Evaluate it if you can.

By considering what the curves $g_{m}([0,1])$ look like in $\mathbf{H}$ as $m \rightarrow \infty$, determine the putative limit of the hyperbolic lengths length $\mathbf{H}_{\mathbf{H}}\left(g_{m}([0,1])\right)$ as $m \rightarrow \infty$.

Answer
$\operatorname{Im}\left(g_{m}\right)=t^{3 m}+1$
$\left|g_{m}^{\prime}(t)\right|=\left|1+3 m t^{3 m-1} i\right|=\sqrt{1+9 m^{2} t^{6 m-2}}$
So length $\mathbf{H}\left(g_{m}\right)=\int_{0}^{1} \frac{1}{t^{3 m}+1} \sqrt{( } 1+9 m^{2} t^{6 m-2} d t$.
$\underline{m=0}$ length $_{\mathbf{H}}\left(g_{0}\right)=\int_{0}^{1} \frac{1}{1+1} \sqrt{1+0} d t=\frac{1}{2}$
$\underline{m=1}$ length $_{\mathbf{H}}\left(g_{1}\right)=\int_{0}^{1} \frac{1}{t^{3}+1} \sqrt{1+9 t^{4}} d t$
and others that I don't know how to evaluate.
But, as $m \rightarrow \infty, g+m([0,1])$ approaches the union of the horizontal Euclidean line segment from $i$ to $i+1$ and the vertical line segment from $1+i$ to $1+2 i$.

So, this horizontal Euclidean line segment is parametrized by $f:[0,1] \longrightarrow$ $\mathbf{H}, f(t)=t+i$ and so length $\mathbf{H}_{\mathbf{H}}(f)=\int_{0}^{1} d t=1$
and the vertical line segment has length ${ }_{\mathbf{H}}=\ln (2)=d_{\mathbf{H}}(1+i, 1+2 i)$. So length $\mathbf{H}_{\mathbf{H}}\left(g_{m}\right) \longrightarrow 1+\ln (2)$ as $m \rightarrow \infty$.

