Question

For integers $m \geq 0$, consider the paths $g_m : [0,1] \to \mathbf{H}$ given by

$$g_m(t) = t + (t^{3m} + 1)i.$$

Write down the integral giving the hyperbolic length of the curve $g_m([0,1])$ in **H**. Evaluate it if you can.

By considering what the curves $g_m([0,1])$ look like in \mathbf{H} as $m \to \infty$, determine the putative limit of the hyperbolic lengths length_{\mathbf{H}} $(g_m([0,1]))$ as $m \to \infty$.

Answer

$$\operatorname{Im}(g_m) = t^{3m} + 1$$
$$|g'_m(t)| = |1 + 3mt^{3m-1}i| = \sqrt{1 + 9m^2t^{6m-2}}$$

So length_{**H**}
$$(g_m) = \int_0^1 \frac{1}{t^{3m} + 1} \sqrt{(1 + 9m^2t^{6m-2}dt)}.$$

$$\underline{m=0} \text{ length}_{\mathbf{H}}(g_0) = \int_0^1 \frac{1}{1+1} \sqrt{1+0} \, dt = \frac{1}{2}$$

$$\underline{m=1} \text{ length}_{\mathbf{H}}(g_1) = \int_0^1 \frac{1}{t^3+1} \sqrt{1+9t^4} \, dt$$

and others that I don't know how to evaluate.

But, as $m \to \infty$, g + m([0,1]) approaches the union of the horizontal Euclidean line segment from i to i+1 and the vertical line segment from 1+i to 1+2i.

So, this horizontal Euclidean line segment is parametrized by $f:[0,1] \longrightarrow \mathbf{H}, \ f(t)=t+i \ \text{and so length}_{\mathbf{H}}(f)=\int_0^1 dt=1$

and the vertical line segment has length_{**H**} = $\ln(2) = d_{\mathbf{H}}(1+i, 1+2i)$. So $\underline{\operatorname{length}_{\mathbf{H}}(g_m) \longrightarrow 1 + \ln(2)}$ as $m \to \infty$.