Question

A viscous fluid has constant density ρ and constant kinematic viscosity ν. Non-dimensionalise the steady Navier-Stokes equations with suitable scalings to show that, when the Reynolds number Re satisfies

$$
R e \ll 1,
$$

the non-dimensional equations of motion become, to leading order, the "slowflow" equations

$$
\begin{aligned}
\nabla p & =\nabla^{2} \underline{q} \\
\nabla \cdot \underline{q} & =0
\end{aligned}
$$

where p and q denote the fluid pressure and velocity respectively. Give an example of a fluid mechanics scenario wher such a "slow-flow" approximation would apply.
The fluid is contained between two plates. Cartesian coordinates (x, z) are used. The plates are situated at $z=0$ and $z=\delta h(x)$ in dimensionless variables where $h(x)$ may be regarded as a given function and $\delta \ll 1$. Show how, by further scaling the slow flow equations according to

$$
\begin{aligned}
z & =\delta Z \\
w & =\delta W \\
p & =\frac{P}{\delta^{2}},
\end{aligned}
$$

the two-dimensional "lubrication theory" equations

$$
\begin{aligned}
P_{x} & =u_{Z Z} \\
P_{Z} & =0 \\
u_{x}+W_{Z} & =0
\end{aligned}
$$

may be derived. Given the conditojs under which this limit is valid.
The top plate is held fixed, and the bottom plate is moved with a nondimensional speed of 1 in the positive x-direction. Show that the pressure satisfies Reynolds' equation

$$
\frac{d}{d x}\left(\frac{h^{3}}{6} \frac{d P}{d x}\right)-\frac{d h}{d x}=0
$$

and give suitable boundary conditions for this differential equation. Suppose now that $h(x)=a+b x$ where a and b are constants. WITHOUT SOLVING
the equation comment briefly on whether b should be positive or negative if the top plate is to support a load.
Answer
We have $\left.\begin{array}{c}(\underline{q} \cdot \nabla) \underline{q}=-\frac{1}{\rho} \nabla p+\nu \nabla^{2} \underline{q} \\ \operatorname{div}(\underline{q})=0\end{array}\right\}$
Since slow flow, we set $\underline{x}=L \underline{\bar{x}}, p=(\mu U / L) \bar{p}, \underline{q}=U \underline{\bar{q}}, \Rightarrow$ $\frac{U^{2}}{L}(\underline{\bar{q}} . \nabla) \underline{\bar{q}}=-\frac{1}{\rho L} \bar{\nabla} \bar{p}\left(\frac{\mu U}{L}\right)+\frac{\nu U}{L^{2}} \bar{\nabla}^{2} \underline{\bar{q}}=0$,
Multiplying the momentum equation by $\nu U / L^{2}$
$\Rightarrow \frac{L U}{\nu}(\underline{\bar{q}} \cdot \bar{\nabla}) \underline{\bar{q}}=-\bar{\nabla} \bar{p}+\bar{\nabla}^{2} \underline{\bar{q}}$, but $\frac{L U}{\nu}=\operatorname{Re}$
Thus $\operatorname{Re}(\underline{\bar{q}} \cdot \nabla) \underline{\bar{q}}=-\bar{\nabla} \bar{p}+\bar{\nabla}^{2} \underline{\bar{q}}, \Rightarrow$ for $R e \ll 1$ we get, to lowest order, $\bar{\nabla} \bar{p}=\bar{\nabla}^{2} \bar{q}, \bar{\nabla} \cdot \underline{\bar{q}}=0$
Any decent flow example will do, eg sperm swimming, treacle flowing, tar running down a telegraph pole.

So further scale $\frac{1}{\delta^{2}} P, w=\delta W, z=\delta Z$.
$\left.\Rightarrow \begin{array}{c}\frac{1}{\delta^{2}} P_{x}=u_{x x}+\frac{1}{\delta^{2}} U_{Z Z} \\ \frac{1}{\delta} P_{Z}=\delta W_{x x}+\frac{1}{\delta} W_{Z Z} \\ u_{x}+W_{Z}=0\end{array}\right\}$
Now to leading order as $\delta \rightarrow 0$, we must get

$$
P_{x}=u_{Z Z}, \quad P_{Z}=0, \quad u_{x}+W_{Z}=0
$$

Need $\delta \ll 1, \delta^{2} R e \ll 1$.
Now the top plate is fixed and the bottom is moved with speed 1 .
we have $u_{Z Z}=P_{x} \Rightarrow u=\frac{Z^{2} P_{x}}{2}+A Z+B$
Now $u=0$ on $Z=h, U=1$ on $Z=0$
$\Rightarrow B=1, \quad o=\frac{h^{2} P_{x}}{2}+A h+1$

$$
\begin{aligned}
& \text { and so } \\
& \begin{aligned}
u & =1+\frac{Z^{2} P_{x}}{2}+Z\left(-\frac{1}{h}-\frac{h P_{x}}{2}\right) \\
& =\frac{Z(Z-h) P_{x}}{2}+\left(1-\frac{Z}{h}\right)
\end{aligned} \\
& \left.\int_{h}^{0}\left(u_{x}+W_{Z}\right) d Z=0 \Rightarrow \int_{0}^{h} u_{x} d Z=0 \text { (since } W=0 \text { on } z=0, h\right) \\
& \Rightarrow \frac{\partial}{\partial x} \int_{0}^{h} u d Z=0(\text { since } u=0 \text { on } Z=h) \\
& \frac{d}{d x}\left[\frac{Z^{3}}{6} P_{x}-\frac{Z^{2} h}{4} P_{x}+Z-\frac{Z^{2}}{2 h}\right]_{0}^{h} \Rightarrow \frac{d}{d x}\left[-\frac{h^{3}}{12} P_{x}+\frac{h}{2}\right]=0 \\
& \Rightarrow \frac{d}{d x}\left(\frac{h^{3}}{6} P_{x}\right)-\frac{d h}{d x}=0
\end{aligned}
$$

We impose $P=0$ at $x=0,1$
When $h=a+b x$ need $b<0$ for $P>0$ so that fluid is being forced into a NARROWING gap.

