Question

An incompressible viscous heat-conduction fluid on constant density ρ and constant kinematic viscosity ν flows past a flat plate at y=0. The flow is two-dimensional. Far away from the plate, the speed of the fluid is $(U,0)^T$ where U is a constant. YOU MAY ASSUME that for high Reynolds number steady boundary layer flow (with no body forces) in the region close to the plate the horizontal and vertical velocity components u and v satisfy the dimensional equations

$$uu_x + vu_y = \underline{u}_{yy}$$
$$u_x + v_y = 0$$

The fluid in the mainstream flow has temperature T_0 , and the flat plate has temperature $T-1 > T_0$. YOU MAY ALSO ASSUME that the temperature in the fluid obeys the energy equation

$$\rho c_p(uT_x + vT_y) = k(T_{xx} + T_{yy}) + \nu \rho \Phi$$

where

$$\Phi = 2u_x^2 + 2v_y^2 + v_x^2 + u_y^2 + 2v_x u_y$$

k and c_p are constants. By setting $T = T_0 + \overline{T}(T_1 - T_0)$, where \overline{T} is a dimensionless temperature, and suitably scaling the other variables, show that the temperature in the boundary layer is determined by the dimensional equation

$$\rho c_p(uT_x + vT_y) = kT_{yy} + \rho \nu u_y^2.$$

(NOTE: you may assume that the quantities $k/(\mu c_p)$ and $U^2/(c_p(T_1-T_0))$ are both O(1).)

By seeking a similarity solution to the equations for u, v and T of the form

$$\psi = \sqrt{\nu U x} f(\eta)$$

$$T = T_0 + (T_1 - T_0) g(\eta)$$

where ψ is the stream function so that $u = \psi_y$, $v = -\psi_x$ and the similarity variable η is given by

$$\eta = y\sqrt{\frac{U}{\nu x}},$$

show that f and g satisfy the ordinary differntial equations

$$f''' + \frac{1}{2}ff'' = 0$$
$$g'' + c_1fg' + c_2f''^2 = 0$$

where $'=d/d\eta$ and c_1 and c_2 are constants that you should specify. Given suitable boundary conditions for f and g.

Answer

ASSUME
$$\begin{aligned} uu_x + vu_y &= \nu u_{yy} \\ u_x + v_y &= 0 \end{aligned}$$
 And $\rho c_\rho (uT_x + vT_y) = k(T_{xx} + T_{yy}) + \nu \rho \frac{\partial q_i}{\partial x_j} \left(\frac{\partial q_j}{\partial x_i} + \frac{\partial q_i}{\partial x_j} \right)$ Now put $x = L\overline{x}, \ y = \epsilon L\overline{y}, \ u = U\overline{u}, \ v = \epsilon U\overline{v}, \ (p = \rho U^2\overline{p}) \ \text{and} \ T = T_0 + \overline{T}(T_1 - T_0)$
$$\Rightarrow \frac{\rho c_\rho U(T_1 - T_0)}{L} (\overline{u}\overline{T}_{\overline{x}} + \overline{v}\overline{T}_{\overline{y}}) = \frac{k(T_1 - T_0)}{L^2} \left(\overline{T}_{\overline{xx}} + \frac{1}{\epsilon^2} \overline{T}_{\overline{yy}} \right) + \nu \rho \Phi$$

$$\Phi = 2u_x^2 + 2v_y^2 + v_x^2 + u_y^2 + 2v_x u_y$$

$$\frac{\rho c_{\rho} U(T_{1} - T_{0})}{L} \left(\overline{u} \overline{T}_{\overline{x}} + \overline{v} \overline{T}_{\overline{y}} \right)$$

$$= \frac{k(T_{1} - T_{0})}{L^{2}} \left(\overline{T}_{\overline{x}\overline{x}} + \frac{1}{\epsilon^{2}} \overline{T}_{\overline{y}\overline{y}} \right)$$

$$+ \frac{\nu \rho U^{2}}{L^{2}} \left(2\overline{u}_{x}^{2} + 2\overline{v}_{y}^{2} + \epsilon^{2} \overline{v}_{x}^{2} + \frac{1}{\epsilon^{2}} \overline{u}_{y}^{2} + 2\overline{v}_{x} \overline{u}_{y} \right)$$

$$\overline{u} \overline{T}_{\overline{x}} + \overline{v} \overline{T}_{\overline{y}} = \frac{k}{L\rho U c_{\rho}} \left(\overline{T}_{\overline{x}\overline{x}} + \frac{\overline{T}_{\overline{y}\overline{y}}}{\epsilon^{2}} + \frac{\nu U}{Lc_{\rho}(T_{1} - T_{0})} \left(2\overline{u}_{x}^{2} + 2\overline{v}_{\overline{y}}^{2} + 2\overline{v}_{y} \overline{u}_{y} \right) \right)$$

$$+ \epsilon^{2} \overline{v}_{x}^{2} + \frac{1}{\epsilon^{2}} \overline{u}_{y}^{2} + 2\overline{v}_{x} \overline{u}_{y} \right)$$

Now we were told to assume that $|2|\mu c_{\rho}$, $U^2/c_p(T_1-T_0)$ were O(1). So TAKE THEM TO BE 1.

$$\Rightarrow \overline{u}\overline{T}_{\overline{x}} + \overline{v}\overline{T}_{\overline{y}} = \left(\frac{\nu}{LU}\right) \left(\overline{T}_{\overline{x}\overline{x}} + \frac{1}{\epsilon^2}\overline{T}_{\overline{y}\overline{y}}\right) + \left(\frac{\nu}{LU}\right) \left(2\overline{u}_{\overline{x}}^2 + 2\overline{v}_{\overline{x}}^2 + \epsilon^2\overline{v}_{\overline{y}}^2 + \frac{1}{\epsilon^2}\overline{u}_{\overline{y}}^2 + 2\overline{v}_{\overline{x}}\overline{u}_{\overline{y}}\right)$$

Now $\nu/LU = 1/Re$ and the assumption that was used to derive the momentum boundary layer equations in the fluid was $\epsilon^2 Re = 1$.

Thus for
$$\epsilon \ll 1$$
, $Re \gg 1$, $\epsilon^2 Re = 1$ we get $\overline{u}T_{\overline{x}} + \overline{v}T_{\overline{y}} = \overline{T}_{\overline{y}\overline{y}} + \overline{u}_{\overline{y}}^2$. Redimensionalising $\Rightarrow \rho c_p(uT_x + vT_y) = kT_{yy} + \rho \nu u_y^2$.

Now seek $\psi = \sqrt{vUx}f(\eta)$, $T = T_0 + (T_1 - T_0)g(\eta)$, $\left(\eta = y\sqrt{\frac{U}{\nu x}}\right)$.

 $u = \psi_y = Uf'(\eta)$, $u_y = \psi_{yy} = \frac{u^{3/2}}{\sqrt{\nu x}}f''$, $u_{yy} = \frac{U^2}{\nu x}f'''$
 $u_x = -\frac{1}{2}x^{-\frac{3}{2}}Uy\sqrt{\frac{U}{\nu}}f''$

$$T_{x} = (T_{1} - T_{0})y\sqrt{\frac{U}{\nu}}\left(-\frac{1}{2}\right)x^{-\frac{3}{2}}g'$$

$$T_{y} = (T_{1} - T_{0})\sqrt{\frac{U}{\nu x}}g$$

$$T_{yy} = (T_{1} - T_{0})\frac{U}{\nu x}g''$$

$$v = -\psi_{x} = -\frac{1}{2}x^{-\frac{1}{2}}\sqrt{U\nu}f - \sqrt{\nu Ux}y(-\frac{1}{2}x^{-\frac{3}{2}})y\sqrt{\frac{U}{\nu}}f'$$

$$\Rightarrow Uf'\left(-\frac{1}{2}x^{-\frac{3}{2}}U^{\frac{3}{2}}\nu^{-\frac{1}{2}}f''\right) + U^{\frac{3}{2}}\nu^{-\frac{1}{2}}x^{-\frac{1}{2}}f''\left(-\frac{1}{2}fx^{-\frac{1}{2}}U^{\frac{1}{2}}\nu^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}}yx^{\frac{1}{2}}Uf'\right) = \frac{U^{2}}{x}f'''$$

$$\rho c_{p} \left(U f'(T_{1} - T_{0}) y U^{\frac{1}{2}} \nu^{-\frac{1}{2}} \left(-\frac{1}{2} \right) x^{-\frac{3}{2}} g' + (T_{1} - T_{0}) \sqrt{\frac{U}{\nu x}} g' \left(-\frac{1}{2} x^{-\frac{1}{2}} \sqrt{U} \nu f + \frac{1}{2} x^{-1} y U f' \right) \right)$$

$$= (T_{1} - T_{0}) \frac{U}{\nu x} g'' k + \rho \frac{\nu U^{3}}{\nu x} f''^{2}$$

 \Rightarrow

$$U^{2}x^{-1}\left(-\frac{1}{2}\right)ff'' = \frac{U^{2}}{x}f'''$$

$$\rho c_{\rho}(T_{1} - T_{0})\sqrt{\frac{U}{\nu x}}g'\left(-\frac{1}{2}\right)x^{-\frac{1}{2}}\sqrt{U\nu}f$$

$$= (T_{1} - T_{0})\left(\frac{U}{\nu x}\right)kg'' + \frac{\rho U^{3}}{x}f''^{2}$$

i.e
$$f''' + \frac{1}{2}ff'' = 0$$

 $g'' + c_1fg' + c_2f''^2$ $\begin{cases} c_1 + \frac{1}{2}\frac{\mu c_{\rho}}{k} \\ c_2 = \mu U^2/k(T_1 - T_0) \end{cases}$
B/C's:- $f(0) = f'(0) = 1$ (no slip), $f'(\infty) = 1$ (MATCHING)
 $g(0) = 1, g(\infty) = 0$