Question

An incompressible viscous heat-conduction fluid on constant density p and
constant kinematic viscosity v flows past a flat plate at y = 0. The flow is
two-dimensional. Far away from the plate, the speed of the fluid is (U, 0)%
where U is a constant. YOU MAY ASSUME that for high Reynolds number
steady boundary layer flow (with no body forces) in the region close to the
plate the horizontal and vertical velocity components u and v satisfy the
dimensional equations

Uly + VUy = Uy,

Uy +vy, = 0

The fluid in the mainstream flow has temperature T}, and the flat plate has
temperature T'— 1 > Tp. YOU MAY ALSO ASSUME that the temperature
in the fluid obeys the energy equation

pep(uTy +vT,) = k(Tyy + Tyy) + vp®
where
O = 2u2 + 2@5 + 02 + uf/ + 203Uy

k and c, are constants. By setting T = Ty + T(Ty — Ty), where T is a
dimensionless temperature, and suitably scaling the other variables, show
that the temperature in the boundary layer is determined by the dimensional
equation

pcy(uly +vT,) = kT, + puui.
(NOTE: you may assume that the quantities k/(uc,) and U?/(c,(Ty — Tp))

are both O(1).)
By seeking a similarity solution to the equations for u, v and T of the form

Y = VvUxf(n)
T = To+ (T —To)g(n)

where 1 is the stream function so that v = v, v = —, and the similarity

variable 7 is given by
| U
n=uy —
vx

show that f and ¢ satisfy the ordinary differntial equations

1
n I
- = 0
"+ 55
gl/ 4 leg/ + CQfH2 — 0
where " = d/dn and ¢; and ¢y are constants that you should specify. Given

suitable boundary conditions for f and g.
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ASSUME

Uy + VUy = Vlyy
Uy + Uy = 0
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Now put * = Lz, y = €Ly, u = Unu, v = eUv, (p = pU?p) and T =
Ty + T(Ty — Tp)
= pch(fZ; —T) (T +vTy) =
= 2u + 2v] + v2 + ul + 2v,u,

And pe,(uTy +vT}) = k(Ty + Tyy) +vp
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Now we were told to assume that |2|puc,, U?/c,(Ty —Tp) were O(1). So TAKE
THEM TO BE 1.
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Now v/LU = 1/Re and the assumption that was used to derive the momen-
tum boundary layer equations in the fluid was €2 Re = 1.
Thus for e < 1, Re > 1, e2Re = 1 we get
ulz+ 0Ty =Ty + E% Redimensionalising =
pep(uly +vT,) = kT, + pru;.
Now seek ¢ = vVoUz f(n), T =Ty + (11 — To)g(n), (77 =y %)
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B/C’s:- f(0) = f(0) =) (no slip), f'(c0) =1 (MATCHING)
9(0) = 1, g(o0) = 0



