Question

Define the Reynolds number Re for a viscous flow. YOU MAY ASSUME that a suitable non-dimensional form of the steady Navier-Stokes equations for use in studying boundary layer theory is

$$
\begin{aligned}
(\underline{q} \cdot \nabla) \underline{q} & =-\nabla p+\frac{1}{R e} \nabla^{2} \underline{q} \\
\nabla \cdot \underline{q} & =0
\end{aligned}
$$

where the fluid pressure and velocity are denoted respectively by p and $q=$ $(u, v)^{T}$, and lengths, pressures and velocities have been non-dimensionalised using $L, \rho U_{\infty}^{2}$ and U_{∞} respectively. (Here ρ denotes the constant fluid density, and L and U_{∞} are a typical length and speed in the flow.)
Starting from these equations, derive the non-dimensional boundary layer equations

$$
\begin{aligned}
u u_{x}+v u_{y} & =-p_{x}+u_{y y} \\
u_{x}+v_{y} & =0
\end{aligned}
$$

for two-dimensional steady incompressible flow at high Reynolds number past a flat plate situated at $y=0$.
Now assume that the horizontal speed of the external flow field is given (in dimensional variables) by

$$
U(x)=U_{\infty}\left(\frac{x}{L}\right)^{m}
$$

where U_{∞} and m are constants. By defining a stream function $\psi(x, y)$ which satisfies $u=\psi_{y}, v=-\psi_{x}$, show that ψ satisifies

$$
\psi_{y} \psi_{x y}-\psi_{x} \psi_{y y}=m x^{2 m-1}+\psi_{y y y}
$$

Give boundary conditions for ψ for this flow.
By assuming a solution of the form

$$
\begin{aligned}
\psi(x, y) & =x^{\frac{m+1}{2}} f(\eta) \\
\eta & =y x^{\frac{m-1}{2}}
\end{aligned}
$$

where ${ }^{\prime}=d / d \eta$, show that f satisfies the Falkner-Skan equation

$$
f^{\prime \prime \prime}+\left(\frac{m+1}{2}\right) f f^{\prime \prime}+m\left(1-f^{\prime 2}\right)=0
$$

and give suitable boundary conditions for f.

Answer

$$
R e=\frac{L U}{\nu} \quad \mathrm{~L}: \text { Typical length } \mathrm{U}: \text { Typical speed }
$$

Now further rescale $y=\epsilon Y, v=\epsilon V$ (thin layer)

$$
\begin{aligned}
u u_{x}+V u_{y} & =-p_{x}+\frac{1}{R e}\left(u_{x x}+\frac{1}{\epsilon^{2}} u_{Y Y}\right) \\
\Rightarrow\left(u V_{x}+V V_{Y}\right) & =\frac{-1}{\epsilon} p_{Y}+\frac{1}{R e}\left(\epsilon V_{x x}+\frac{1}{\epsilon} V_{Y Y}\right) \\
u_{x}+V_{Y} & =0
\end{aligned}
$$

Now consider the relative size of ϵ and $R e$. If $R e \epsilon^{2} \gg 1$ then for $R e \gg 1$ the first equation just gives Euler (no good). Also, if $R e \epsilon^{2} \ll 1$ then it just gives $u_{Y Y}=0 \Rightarrow u=A(x) Y$ which $\rightarrow \infty$ as $Y \rightarrow \infty \Rightarrow$ need Re $^{2}=O(1)$. Thus for $R e \gg 1$ get $p_{Y}=0$ in the second equation $\Rightarrow p=p(x)$ alone, and $u u_{x}+V u_{Y}=-p_{x}+u_{Y Y}, u_{x}+V_{Y}=0$ or, back in N/D (unscaled) variables

$$
\left.\begin{array}{rl}
u u_{x}+v u_{y} & =-p_{x}+u_{y y} \\
u_{x}+v_{y} & =0
\end{array}\right\}
$$

Now in the outer flow $U(x)=U_{\infty}\left(\frac{x}{L}\right)^{m}$. BUt here the flow is inviscid and so $p+\frac{1}{2} \rho U^{2}=$ constant (Bernoulli)
$\Rightarrow p_{x}+\rho U U_{x}=0$
i.e. $p_{x}=-\rho U_{\infty}^{2}\left(\frac{x}{L}\right)^{m} m \frac{1}{L}\left(\frac{x}{L}\right)^{m-1}$
\Rightarrow scaling p with $\rho U_{\infty}^{2}, x$ with L gives (N/D)
$p_{x}=-m x^{2 m-1}$
Now e have $u u_{x}+v u_{y}=m x^{2 m-1}+u_{y y}$ and setting $u=\psi_{y}, v=-\psi_{x}$ we see that $u_{x}+v_{y}=0$.
The momentum equation now gives

$$
\psi_{y} \psi_{x y}-\psi_{x} \psi_{y y}=m s^{2 m-1}+\psi_{y y y}
$$

B/C's:- (no slip) $\psi=\psi_{y}$ at $y=0$

$$
\psi_{y}=x^{m} \text { as } \mathrm{y} \rightarrow \infty(\mathrm{MATCHING})
$$

So now try $\psi=x^{\frac{m+1}{2}} f(\eta), \eta=y x^{\frac{m-1}{2}}$
$\psi_{y}=x^{m} f^{\prime}, \psi_{y y}=x^{\frac{3 m-1}{2}} f^{\prime \prime}, \psi_{y y y}=x^{\frac{4 m-2}{2}} f^{\prime \prime \prime}$
$\psi_{x}=\left(\frac{m+1}{2}\right) x^{\left(\frac{m-1}{2}\right)} f+x^{\left(\frac{m+1}{2}\right)} y\left(\frac{m-1}{2}\right) x^{\frac{m-3}{2}} f^{\prime}$
$\psi_{y x}=m x^{m-1} f^{\prime}+x^{m} y\left(\frac{m-1}{2}\right) x^{\frac{m-3}{2}} f^{\prime \prime}$

$$
\begin{aligned}
& \Rightarrow \quad x^{m} f^{\prime}\left(m x^{m-1} f^{\prime}+x^{\frac{3 m-3}{2}} y\left(\frac{m-1}{2}\right) f^{\prime \prime}\right) \\
& -x^{\frac{3 m-1}{2}} f^{\prime \prime}\left(\left(\frac{m+1}{2}\right) x^{\frac{m-1}{2}} f+x^{\frac{2 m-2}{2}} y\left(\frac{m-1}{2}\right) f^{\prime}\right) \\
& =m x^{2 m-1}+x^{2 m-1} f^{\prime \prime \prime} \\
& \Rightarrow m x^{2 m-1} f^{\prime 2}-\left(\frac{m+1}{2}\right) x^{2 m-1} f f^{\prime \prime}=m x^{2 m-1}+x^{2 m-1} f^{\prime \prime \prime} \\
& \Rightarrow m f^{\prime 2}-\left(\frac{m+1}{2}\right) f f^{\prime \prime}=m+f^{\prime \prime \prime} \\
& \text { i.e. } f^{\prime \prime \prime}+\left(\frac{m+1}{2}\right) f f^{\prime \prime}+m\left(1-f^{\prime 2}\right)=0 \\
& \text { B/C's:- } \begin{array}{lr}
f(0)=f^{\prime}(0)=0 & \text { (no slip) } \\
f^{\prime}(\infty)=1 & \text { (MATCHING) }
\end{array}
\end{aligned}
$$

