Question

Incompressible viscous fluid of constant density ρ and constant kinematic viscosity ν occupies the region

$$
\{-\infty<x<\infty,-\infty<y<\infty\}
$$

above an impermeable plane situated at $z=0$. This plane creates flow in the region $z>0$ by moving with a speed $U \cos (\omega t)$ parallel to itself, where U and ω are both constant. There are no body forces and no pressure gradient.
(i) What flow would be produced if this experimetn was carried out with an inviscid fluid?
(ii) By seeking time dependent solutions to the Navier-Stokes equations of the form

$$
\underline{q}=\left(\begin{array}{c}
R E|f(z) \exp (i \alpha t)| \\
0 \\
0
\end{array}\right)
$$

where f is a suitably chosen function, α is a suitably chosen constant and $R E$ signifies that the real part of the expression is to be taken, show that

$$
u=U \exp \left(-z \sqrt{\frac{\omega}{2 \nu}}\right) \cos \left(\omega t-z \sqrt{\frac{\omega}{2 \nu}}\right) .
$$

(iii) Sketch the velocity profile for this flow at time $t=0$.

Answer

(Assume wlog that the plane moves parallel to the x -axis)
(i) For inviscid fluid there would be NO MOTION AT ALL since an inviscid fluid can sustain slip at the walls.
(ii) Seek a solution $\underline{q}=(u(z, t), 0,0)$. Then $\operatorname{div}(\underline{q})=0$ so that mass conservation is satisfied.
The momentum equations give

$$
\begin{aligned}
u_{t}=u u_{x}+v u_{y}+w u_{z} & =0+\nu\left(u_{x x}+u_{y y}+u_{z z}\right) \\
0+u v_{x}+v v_{y}+w v_{z} & =0+\nu(0+0+0) \\
0+u w_{x}+v w_{y}+w w_{z} & =0+\nu(0+0+0)
\end{aligned}
$$

i.e. The second two give just $0=0$ and the first reduces to
$u_{t}=\nu u_{z z}$ with $u(0, t)=U \cos \omega t$.
Now trying $u=f(z) e^{i \alpha t}$ (and taking real parts throughout) we see first from the B / C that $\alpha=\omega, f(0)=U$. Also
$f(z) i \alpha e^{i \alpha t}=\nu f^{\prime \prime} e^{i \alpha t} \Rightarrow f^{\prime \prime}-\frac{i \alpha}{\nu} f=0$
$\Rightarrow f=A e^{\lambda_{1} z}+B e^{\lambda_{2} z} \quad\left(\lambda^{2}=i \alpha / \nu=i \omega / \nu\right)$
Thus $\lambda=\sqrt{\frac{\omega}{\nu}} \sqrt{i}$. Now $i=e^{i \frac{\pi}{2}+2 k \pi} \Rightarrow \sqrt{i}=e^{i \frac{\pi}{4}+k \pi}$
i.e. the two roots of i are

$$
\begin{aligned}
e^{i \frac{\pi}{4}} & =\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}
\end{aligned}=\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}{ }_{\text {and }} e^{5 i \frac{\pi}{4}}=\cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}=\frac{-1}{\sqrt{2}}-\frac{i}{\sqrt{2}}
$$

So for finiteness as $z \rightarrow+\infty$ need $\lambda_{2}=\left(\frac{-1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right) \sqrt{\frac{\omega}{\nu}}$
$\Rightarrow f=A \exp \left((-1-i) z \sqrt{\frac{\omega}{2 \nu}}\right)$ now $f(0)=0 \Rightarrow A=U$
\Rightarrow

$$
\begin{aligned}
u & =U \exp \left[(-1-i) z \sqrt{\frac{\omega}{2 \nu}}+i \omega t\right] \\
& =U \exp \left(-z \sqrt{\frac{\omega}{2 \nu}}\right) \exp \left(i\left(\omega t-z \sqrt{\frac{\omega}{2 \nu}}\right)\right)
\end{aligned}
$$

(iii)

(For full marks must show alternation, decay and periodicity)

