## Question

Show that if  $\alpha$  has a positive imaginary part then the transformation

$$z \to \frac{z - \alpha}{z - \bar{\alpha}}$$

maps the upper half plane onto the unit disc  $D = \{z | |z| < 1\}$ .

Hence find a transformation T which maps the half plane  $\{z=x+iy|x\leq \frac{1}{2}\}$ onto D and maps 0 to 0 and  $\infty$  to -1.

Find the image of the strip  $\{z = x + iy | 0 \le x \le \frac{1}{2}\}$  under T.

Answer Let  $w=\frac{z-\alpha}{z-\bar{\alpha}},$  if z=x - real then  $w=\frac{x-\alpha}{x-\bar{\alpha}}=\frac{x-\alpha}{\bar{x}-\bar{\alpha}},$  so |w|=1. Conversely if |w|=1 then  $|z-\alpha|=|z-\bar{\alpha}|$  i.e. z is equidistance from  $\alpha$  and

 $\bar{\alpha}$  and is therefore real.

So the transformation maps the real axis to the unit circle.

Now w=0 is the image of  $z=\alpha$ , so if  $\text{im}\alpha>0$ , the interior of U maps to the interior of D.



 $z \rightarrow -iz$  The composite of these two maps sends H to U.

$$z \to z - \frac{1}{2}$$
  $z \to -iz$  The composition  $z \to z - \frac{1}{2}$  The composi

$$z = 0 \rightarrow w = 0 \Leftrightarrow \frac{1}{2}i - \alpha = 0 \text{ i.e. } \alpha = \frac{1}{2}i.$$
Then  $w = \frac{-iz}{-iz + \frac{1}{2}i}$ 

Then 
$$w = \frac{-iz}{-iz + \frac{1}{2}i}$$

Now under this transformation  $z = \infty \rightarrow w = 1$ 

So a reflection will make  $z = \infty \rightarrow w = -1$ 

i.e. 
$$w \to -\dot{w}$$

i.e. 
$$w \to -w$$
  
So  $w = \frac{iz}{-iz + \frac{1}{2}i}$ 

does all that is required.