Question

State the maximum Modulus Principle for a non-constant function $f(z)$ that is analytic within a simple closed contour γ and continuous on γ.
Show that if $f(z) \neq 0$ for all z within and on γ then the minimum value of $|f(z)|$ cannot be achieved in the interior of γ.
By considering the function $e^{f(z)}$ show that no non-constant harmonic function can achieve its maximum or minimum values in the interior of γ. Hence find the maximum and minimum values of $x^{3}-3 x y^{2}$ in the set $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$ and find where the bounds are attained.

Answer

Statement of max mod. Proof of min mod applies max mod to $\frac{1}{f(z)}$ - bookwork

Let u be harmonic. Find a harmonic conjugate v so that $f(z)=u+i v$ is analytic.
Now $\left|e^{f(z)}\right|=e^{u}$ so $e^{f(z)} \neq 0$
Thus $\left|e^{f(z)}\right|$ achieves its max and min on γ.
Now e^{u} is an increasing function of u, so u achieves its max and min on γ. Let $u(x, y)=x^{3}-3 x y^{2}$, then $u_{x x}=6 x$ and $u_{y y}=-6 x$, so u is harmonic. So the unit disc u achieves max and \min on γ, i.e. where $y^{2}=1-x^{2}$.
So $u\left(x, 1-x^{2}\right)=x^{3}-3 x\left(1-x^{2}\right)=4 x^{3}-3 x=h(x) \quad-1 \leq x \leq 1$
$h^{\prime}(x)=12 x^{2}-3=0$ where $4 x^{2}=1$ i.e. $x= \pm \frac{1}{2}$
$h^{\prime \prime}(x)=24 x>0$ at $x=\frac{1}{2} \quad$ - a local minimum
$h\left(\frac{1}{2}\right)=-1 \quad h\left(-\frac{1}{2}\right)=1$
At the end points $h(-1)=-1 \quad h(1)=1$
so u achieves max values at $\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ and (1,0)
and u achieves min values at $\left(\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ and $(-1,0)$.

