Question

State, without proof, the Cauchy-Riemann equations giving a necessary con-
dition for a complex function f(z) = wu(z,y) + iv(x,y) to be analytic in
a region A and state sufficient conditions, involving the Cauchy-Riemann
equations, for f to be analytic in A.

Show that in polar co-ordinates the Cauchy-Riemann equations become
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Deduce that

(cos(log ) + isin(logr))e™

defines an analytic function in some neighbourhood of each point other than
the origin. Write this expression in the form F(z), where z = re®, and
discuss the multi-valued nature of F'.

Choosing the branch of F' for which F'(1) = 1 compute /(SF(z)dz, where 0 is

the upper half of the unit circle from z =1 to z = —1.
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The Cauchy-Riemann equations are g _ —U, @t which must
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hold at each point of A. For sufficiency we need the additional conditions
that the partial derivatives should be continuous in A.

Using the chain rule gives, with = rcos@ y = rsinf
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% = cosf + 8_y sin 6
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% = _%TSIHQ+ a—yrcos@
% = % cosf + g—z sin 6
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So

r@ = %7‘ cos 0 + @r sin 0
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The partial derivatives are continuous except at z = 0, so the v and v define
an analytic function except at z = 0.

(cos(logr) +isin(logr))e™? = e'loeme=0 = gillogr+il) — gilogz — i

Z* is multi-valued because replacing log r by log r+2n7 gives the same answer.
On the unit circle 7 = 1, so with F(z) = e~? we have F(1) = e ™% = 1.
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