Question

(a) A curve C joins two points $(a, \alpha),(b, \beta)$ and has prescribed slopes at $x=a$, and b. Given that the functional

$$
I=\int_{a}^{b} F\left(y, y^{\prime}, y^{\prime \prime}, x\right) d x
$$

must be stationary when evaluated along this curve, write down the Euler-Lagrange equation which determines C.
(b) If F does not explicitly depend of x or y, show that the above equation for the extremal has a first integral

$$
y^{\prime \prime} \frac{\partial F}{\partial y^{\prime \prime}}-F=A y^{\prime}+B
$$

where A, B are constants. (Hints: After a simplification, try a multiplication by $y^{\prime \prime}$ and then carry out a partial integration, as in the "special cases" section of the simple E-L notes. The note that $F=F\left(y^{\prime}, y^{\prime \prime}\right)$ only and recognise the first derivative of F wrt x).
(c) Derive a differential equation for the function $y(x 0$ which makes

$$
I=\int_{0}^{2} y^{\prime} y^{\prime \prime 2} d x
$$

stationary. Solve this equation, given the boundary conditions $y(0)=$ $y^{\prime}(0)=0, y(2)=1, y^{\prime}(2)=1$. (Hint: use the answer of part b above).

Answer

(a) Bookwork: $\frac{\partial F}{\partial y}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y^{\prime}}\right)-\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)=0$
(b) If $F=F\left(y^{\prime}, y^{\prime \prime}\right)$ then

$$
\begin{aligned}
& -\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)+\frac{d^{2}}{d x^{2}}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)=0 \\
& \Rightarrow \frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime \prime}}\right)-\frac{\partial F}{\partial y^{\prime}}=\text { const }=A \text { say }
\end{aligned}
$$

now multiply through by $y^{\prime \prime}$:

$$
\Rightarrow \underbrace{\frac{d}{d x}\left(y^{\prime \prime} \frac{\partial F}{\partial y^{\prime \prime}}\right)-y^{\prime \prime \prime} \frac{\partial F}{\partial y^{\prime \prime}}}-y^{\prime \prime} \frac{\partial F}{\partial y^{\prime}}=A y^{\prime \prime}
$$

spot this partial integration as in notes

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x}\left(y^{\prime \prime} \frac{\partial F}{\partial y^{\prime \prime}}\right)-\frac{d}{d x} F\left(y^{\prime}, y^{\prime \prime}\right)=A y^{\prime \prime} \\
& \Rightarrow y^{\prime \prime} \frac{\partial F}{\partial y^{\prime \prime}}-F\left(y^{\prime}, y^{\prime \prime}\right)=A y^{\prime}+B \text { as required. }
\end{aligned}
$$

(c) $F=y^{\prime} y^{\prime \prime 2}$ so (B) $\Rightarrow 2 y^{\prime} y^{\prime \prime 2}-y^{\prime} y^{\prime \prime 2}=A y^{\prime}+B$ since $y^{\prime}(0)=0 \Rightarrow B=0$ Therefore $y^{\prime}=0$ or $y^{\prime \prime}=2 \alpha$ say $\Rightarrow y=\alpha x^{2}+\beta x+\gamma y(0)=0, y^{\prime}(0)=$ $0 \Rightarrow \gamma=\beta=0 ; y(2)=1 \Rightarrow \alpha=\frac{1}{4}, y^{\prime}(2)=1$ is satisfied
\Rightarrow solution is $y=\frac{x^{2}}{4}$

