Question

Write down the Euler-Langrange equation appropriate to the functional

$$
I=\iint_{Z} F\left(u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}, x, y\right) d x d y
$$

Find the Euler-Lagrange equations associated with the functionals
(i) $I=\iint\left(\nabla^{2} u\right)^{2} d x d y$
(ii) $I=\iint\left(u_{x x} u_{y y}-u_{x y}^{2}\right) d x d y$

Answer

The E-L equation is:

$$
\begin{aligned}
& 0=\frac{\partial F}{\partial u}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial u_{x}}\right)-\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial u_{y}}\right) \\
& +\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial u_{x x}}\right)-\underbrace{\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial F}{\partial u_{x y}}\right)}+\frac{\partial^{2}}{\partial y^{2}}\left(\frac{\partial F}{\partial U_{y y}}\right)
\end{aligned}
$$

Assuming that both F and its first derivatives are given on the boundary. So for
(i) $F=\left(u_{x x}+u_{y y}\right)^{2}=\left(\nabla^{2} u\right)^{2}=F\left(u_{x x}, u_{y y}\right)$ only, so E-L is:

$$
\begin{aligned}
& \qquad \frac{\partial^{2}}{\partial x^{2}}\left[2\left(u_{x x}+u_{y y}\right)\right]+\frac{\partial^{2}}{\partial y^{2}}\left[2\left(u_{x x}+u_{y y}\right)\right]=0 \\
& \Rightarrow u_{x x x x}+2 u_{x x y y}+u_{y y y y}=0 \\
& \text { or } \underline{\nabla}^{2}\left(\underline{\nabla}^{2} u\right)=0 \\
& \text { or } \underline{\nabla}^{4} u=0
\end{aligned}
$$

(ii) $F=\left(u_{x x} u_{y y}-u_{x y}^{2}\right)=F\left(u_{x x}, u_{y y}, u_{x y}\right)$ only so E-L is:

$$
\begin{aligned}
& \quad \frac{\partial^{2}}{\partial x^{2}}\left(u_{y y}\right)+\frac{\partial^{2}}{\partial x \partial y}\left(-2 u_{x y}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(u_{x x}\right)=0 \\
& \Rightarrow u n 0=0!
\end{aligned}
$$

So F is such that I is always stationary!!!

