Question

A model of a linear molecule consists of four masses $m, 2 m, 2 m, m$ connected by springs with spring constant k. Denoting the displacement of the masses from their equlibrium positions by $x_{1}, x_{2}, x_{3}, x_{4}$ respectivily, the equations can be written in the matrix form as:

$$
\frac{d}{d t^{2}} \mathbf{x}=A \mathbf{x}
$$

where

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right), \quad A=\left(\begin{array}{rrrr}
-2 b & 2 b & 0 & 0 \\
b & -2 b & b & 0 \\
0 & 0 & 2 b & -2 b
\end{array}\right), \text { and } b=\frac{k}{2 m}
$$

The matrix A has eigenvalues $0,-b,-3 b$ and $-4 b$. Find all the corresponding eigenvectors of A, and hence show that the equations have three types of oscillatory solution.
(i) oscillations of frequency $\frac{1}{2 \pi} \sqrt{\frac{k}{2 m}}$ when $x_{2}=\frac{1}{2} x_{1}, x_{3}=-\frac{1}{2} x_{1}, x_{4}=-x_{1}$,
(ii) oscillations of frequency $\frac{1}{2 \pi} \sqrt{\frac{3 k}{2 m}}$ when $x_{2}=x_{3}=-\frac{1}{2} x_{1}, x_{4}=x_{1}$,
(iii) oscillations of frequency $\frac{1}{\pi} \sqrt{\frac{k}{2 m}}$ when $x_{2}=-x_{1}, x_{3}=x_{1}, x_{4}=-x_{1}$,

Answer

$$
\left(\begin{array}{c}
\frac{d^{2} x_{1}}{d t^{2}} \\
\frac{d^{2} x_{2}}{d t^{2}} \\
\frac{d^{2} x_{3}}{d t^{2}} \\
\frac{d^{2} x_{4}}{d t^{2}}
\end{array}\right)=\left(\begin{array}{cccc}
-2 b & 2 b & 0 & 0 \\
b & -2 b & b & 0 \\
0 & b & -2 b & b \\
0 & 0 & 2 b & -2 b
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

Eigenvalues are: $0,-\mathrm{b},-3 \mathrm{~b},-4 \mathrm{~b}$.
To find eigenvectors:

$$
\left.\begin{array}{r}
\underline{\lambda=0} \quad \text { Solve }\left(\begin{array}{cccc}
-2 b & 2 b & 0 & 0 \\
b & -2 b & b & 0 \\
0 & b & -2 b & b \\
0 & 0 & 2 b & -2 b
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
\left.\begin{array}{r}
x_{1}=\alpha \\
-2 b x_{1}+2 b x_{2}
\end{array}\right)=0 \\
x_{2}=\alpha \\
\text { or } \begin{array}{l}
\text { let } \\
b x_{1}-2 b x_{2}+b x_{3} \\
b x_{2}-2 b x_{3}+b x_{4}
\end{array}=0 \\
2 b x_{3}-2 b x_{4}=0
\end{array}\right\} \begin{aligned}
& \text { so } \\
& \text { then } \\
& \text { and } \\
& x_{3}=2 x_{2}-x_{1}=\alpha \\
& x_{4}=\alpha
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suitable eigenvector } \alpha\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) \\
& \underline{\lambda=-b} \quad \text { Solve }\left(\begin{array}{cccc}
-b & 2 b & 0 & 0 \\
b & -b & b & 0 \\
0 & b & -b & b \\
0 & 0 & 2 b & -b
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& -b x_{1}+2 b x_{2}=0 \text { let } \quad x_{2}=\beta \\
& \text { or } \left.\begin{array}{l}
b x_{1}-b x_{2}+b x_{3}=0 \\
b x_{2}-b x_{3}+b x_{4}=0
\end{array}\right\} \begin{array}{l}
\text { so } \\
\text { the }
\end{array} \\
& x_{1}=2 \beta \\
& \left.2 b x_{3}-b x_{4}=0\right\} \text { and } \quad x_{4}=-2 \beta \\
& \text { Suitable eigenvector } \beta\left(\begin{array}{c}
2 \\
1 \\
-1 \\
-2
\end{array}\right) \\
& \underline{\lambda=-3 b} \quad \text { Solve }\left(\begin{array}{cccc}
b & 2 b & 0 & 0 \\
b & b & b & 0 \\
0 & b & b & b \\
0 & 0 & 2 b & b
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& b x_{1}+2 b x_{2}=0 \text { let } \quad x_{2}=\gamma \\
& \text { or } \left.\begin{array}{rlr}
b x_{1}+b x_{2}+b x_{3} & =0 \\
b x_{2}+b x_{3}+b x_{4} & =0 \\
2 b x_{3}-b x_{4} & =0
\end{array}\right\} \begin{array}{lr}
\text { so } & x_{1}=-2 \gamma \\
\text { then } & x_{3}=-x_{1}-x_{2}=\gamma \\
\text { and } & x_{4}=-2 \gamma
\end{array} \\
& \text { Suitable eigenvector } \gamma\left(\begin{array}{c}
-2 \\
1 \\
1 \\
-2
\end{array}\right) \\
& \underline{\lambda=-4 b} \quad \text { Solve }\left(\begin{array}{cccc}
2 b & 2 b & 0 & 0 \\
b & 2 b & b & 0 \\
0 & b & 2 b & b \\
0 & 0 & 2 b & 2 b
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& 2 b x_{1}+2 b x_{2}=0 \text { let } \quad x_{1}=\delta \\
& \text { or } \left.\begin{array}{l}
b x_{1}+2 b x_{2}+b x_{3}=0 \\
b x_{2}+2 b x_{3}+b x_{4}=0
\end{array}\right\} \begin{array}{l}
x_{2}=-\delta \\
\text { so } \\
\text { then } \quad x_{3}=-x_{1}-2 x_{2}=\delta
\end{array} \\
& \left.2 b x_{3}+2 b x_{4}=0\right\} \text { and } \quad x_{4}=-\delta \\
& \text { Suitable eigenvector } \delta\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

The solutions are therefore:

1. Eigenvalue $\lambda=0$ and eigenvector $\mathbf{x}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$ gives a solution

$$
\mathbf{x}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)(B+C t)
$$

(This solution is non - oscillatory)
2. Eigenvalue $\lambda=-b$ and eigenvector $\mathbf{x}=\left(\begin{array}{c}2 \\ 1 \\ -1 \\ -2\end{array}\right)$ gives a solution

$$
\mathbf{x}=\left(\begin{array}{c}
2 \\
1 \\
-1 \\
-2
\end{array}\right)(D \cos \sqrt{b} t+E \sin \sqrt{b} t)
$$

which oscillates with frequency $\frac{\sqrt{b}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{k}{2 m}}$.
(Recall: A solution of the form $(\mathbf{x}=D \cos \sqrt{b} t+E \sin \sqrt{b} t$ oscillates with time period $T=\frac{2 \pi}{\omega}$ and frequency $f=\frac{1}{T}=\frac{\omega}{2 \pi}$)
3. Eigenvalue $\lambda=-3 b$ and eigenvector $\mathbf{x}=\left(\begin{array}{c}-2 \\ 1 \\ 1 \\ -2\end{array}\right)$ gives a solution

$$
\mathbf{x}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
-2
\end{array}\right)(F \cos \sqrt{3 b} t+G \sin \sqrt{3 b} t)
$$

which oscillates with frequency $\frac{\sqrt{3 b}}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{3 k}{2 m}}$
4. Eigenvalue $\lambda=-4 b$ and eigenvector $\mathbf{x}=\left(\begin{array}{c}1 \\ -1 \\ 1 \\ -1\end{array}\right)$ gives a solution

$$
\mathbf{x}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)(H \cos 2 \sqrt{b} t+J \sin 2 \sqrt{b} t)
$$

which oscillates with frequency $\frac{2 \sqrt{b}}{2 \pi}=\frac{1}{\pi} \sqrt{\frac{k}{2 m}}$.

