## Question

Write the second order differential equation

$$
\frac{d^{2} x}{d t^{2}}=3 x+\frac{d x}{d t}
$$

as a linear system of two first order equations, and solve it using matrix methods.

Answer
Put $y=\frac{d x}{d t}$ so that $\frac{d y}{d t}=\frac{d^{2} x}{d x^{2}}=2 x+\frac{d x}{d t}=2 x+y$ so we have a set of simultaneous first order differential equations
$\left.\begin{array}{l}\frac{d x}{d t}=y \\ \frac{d y}{d t}=2 x+y\end{array}\right\}$ or in matrix form $\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=\left(\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right)\binom{x}{y}$
$\left|\begin{array}{rc}-\lambda & 1 \\ 2 & 1-\lambda\end{array}\right|=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)=0$ so $\lambda=-1,2$
$\underline{\lambda=-1} \quad$ Solve $\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right)\binom{x}{y}=\binom{0}{0}$
or $\left.\begin{array}{rl}x+y & =0 \\ 2 x+2 y & =0\end{array}\right\} \begin{aligned} & \text { let } \quad \begin{array}{l}x\end{array}=\alpha \\ & \text { so }\end{aligned} \quad \begin{aligned} & y=-\alpha\end{aligned}$
Suitable eigenvector $\binom{\alpha}{-\alpha}$
$\underline{\lambda=2} \quad$ Solve $\left(\begin{array}{rr}-2 & 1 \\ 2 & -1\end{array}\right)\binom{x}{y}=\binom{0}{0}$
or $\left.\begin{array}{rl}-2 x+y & =0 \\ 2 x-y & =0\end{array}\right\}$ let $\begin{aligned} & x=\beta \\ & \text { so } \quad y=2 \beta\end{aligned}$
Suitable eigenvector $\binom{\beta}{2 \beta}$
General solution is given by $\binom{x}{y}=\alpha\binom{1}{-1} e^{-t}+\beta\binom{1}{2} e^{2 t}$
Hence the general solution to the second order differential equation is $x=\alpha e^{-t}+\beta e^{2 t}$

