Question

Using your matrix calculations from question 3 above, write down the general solution to the following system of second order differential equations:

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=2 x+3 y \\
& \frac{d^{2} y}{d t^{2}}=2 x+y
\end{aligned}
$$

Answer

In matrix form $\binom{\frac{d^{2} x}{d t^{2}}}{\frac{d^{2} y}{d t^{2}}}=\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)\binom{x}{y}$
Eigenvalue $\lambda_{1}=-1$ with eigenvector $\mathbf{x}_{\mathbf{1}}=\binom{1}{-1}$ contributes a solution $\binom{x}{y}=\binom{1}{-1}(A \cos t+B \sin t)$

Eigenvalue $\lambda_{2}=4$ with eigenvector $\mathbf{x}_{\mathbf{2}}=\binom{3}{2}$ contributes a solution $\binom{x}{y}=\binom{3}{2}\left(C e^{2 t}+D e^{-2}\right)$

The general solution to the equations is formed by adding these two solutions:

$$
\begin{aligned}
\binom{x}{y} & =\binom{1}{-1}(A \cos t+B \sin t)+\binom{3}{2}\left(C e^{2 t}+D e^{-2}\right) \\
& =\binom{A \cos t+B \sin t+3 C e^{2 t}+3 D e^{-2 t}}{-A \cos t-B \sin t+2 C e^{2 t}+2 D e^{-2 t}}
\end{aligned}
$$

