Question

Express the following system of first order differential equations in matrix form, and find the eigenvalues and eigenvectors if the associated coefficient matrix:

$$
\begin{aligned}
& \frac{d x}{d t}=2 x+3 y \\
& \frac{d y}{d t}=2 x+y .
\end{aligned}
$$

Hence find the general solution to the equations.
Answer
In matrix form: $\binom{\frac{d x}{d t}}{\frac{d y}{d t}}=\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)\binom{x}{y}$

$$
\begin{aligned}
\left|\begin{array}{cc}
2-\lambda & 3 \\
2 & 1-\lambda
\end{array}\right| & =(2-\lambda)(1-\lambda)-6 \\
& =\lambda^{2}-3 \lambda-4 \\
& =(\lambda-4)(\lambda+1)=0 \\
& \text { so } \quad \lambda
\end{aligned}=-1,4
$$

$\underline{\lambda=-1} \quad$ Solve $\left(\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right)\binom{x}{y}=\binom{0}{0}$
or $\left.\begin{array}{l}3 x+3 y=0 \\ 2 x+2 y=0\end{array}\right\} \begin{aligned} & \text { let } \quad \begin{array}{l}x=\alpha \\ \text { so }\end{array} \quad y=-\alpha\end{aligned}$
Suitable eigenvector $\binom{\alpha}{-\alpha}$
$\underline{\lambda=4} \quad$ Solve $\left(\begin{array}{rr}-2 & 3 \\ 2 & -3\end{array}\right)\binom{x}{y}=\binom{0}{0}$

Suitable eigenvector $\binom{3 \beta}{2 \beta}$
General solution to equations:

$$
\begin{aligned}
\binom{x}{y} & =\binom{\alpha}{-\alpha} e^{-t}+\binom{3 \beta}{2 \beta} e^{4 t} \\
& =\alpha\binom{1}{-1} e^{-t}+\beta\binom{3}{2} e^{4 t}
\end{aligned}
$$

