Question

Suppose that the pdf of a r.v. X is given by

$$
f(x)= \begin{cases}c\left(9-x^{2}\right), & \text { for }-3 \leq x \leq 3, \\ 0, & \text { otherwise }\end{cases}
$$

Determine the value of the constant c. Find the cdf of X, and sketch the pdf and cdf of X. Find the values of the following probabilities:

$$
P\{X<0\}, P\{-1 \leq X \leq 1\}, P\{X>2\}
$$

Answer

For $f(x)$ to be a pdf, it is necessary that

$$
\int_{-\infty}^{\infty} f(u) d u=\int_{-3}^{3} c\left(9-u^{2}\right) d u=1
$$

and so $c=\frac{1}{36}$. Using the relationship between cdf and pdf

$$
\begin{aligned}
& F(x)=\int_{-\infty}^{x} f(u) d u \\
= & \int_{-3}^{x} \frac{9-u^{2}}{36} d u \quad x \in(-3,3) \\
= & \frac{\left(18+9 x-\frac{x^{3}}{3}\right)}{36} x \in(-3,3)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& P\{X<0\}=F(0)=\frac{1}{2} \\
& P\{-1 \leq X \leq 1\}=F(1)-F(-1)=\frac{13}{27} \\
& P\{X>2\}=1-F(2)=\frac{2}{27}
\end{aligned}
$$

