Question

Consider the functions

$$
\begin{aligned}
g(z) & =\log (\mathrm{z}) \\
h(z) & =\log (-\mathrm{z}) \\
f(z) & =g(z)-h(z)
\end{aligned}
$$

(i) Show that $g(z)$ is defined with $\arg (z)$ on $(-\pi, \pi]$ and that $h(z)$ is defined with $\arg (z)$ on $(-2 \pi, 0]$. (Hint: note the difference between rmArg and arg).
(ii) Draw the branch cut which makes the function $f(z)$ single valued and continuous.
(iii) Calculate $\frac{d f}{d z}$. What does this suggest about the function $f(z)$?
(iv) Calculate $f(i)$.
(v) Calculate $f(-i)$.
(vi) Do your answers to (ii) and (iii) contradict your answers to (iii)? (Hint: Consider a general point with $\operatorname{Im}(z)>0$ and then one with $\operatorname{Im}(z)<0)$.

Answer

$$
\begin{align*}
& g(z) \quad \log |z|+i \operatorname{Arg}(z) \tag{i}\\
& \text { so } \operatorname{Arg}(z) \in(-\pi, \pi] \text { by definition } \\
& h(z)=\log |-z|+i \operatorname{Arg}(-\mathrm{z}) \\
& =\log |z|+i \operatorname{Arg}(-\mathrm{z}) \\
& -\pi<\arg (z) \leq \pi \\
& \text { so } \quad-\pi<\arg \left(z e^{i \pi}\right) \leq \pi \\
& \text { so }-\pi<\arg (z)+\pi \leq \pi \\
& -2 \pi<\arg (z) \leq 0
\end{align*}
$$

(ii) $f(z)=\log (z)-\log (-z)$

The branch cut for $\log (z)$ is PICTURE

The branch cut for $\log (-z)$ is PICTURE

Putting them together:
PICTURE
(iii)

$$
\begin{aligned}
\frac{d f}{d z} & =\frac{d}{d z}[\log (\mathrm{z})]-\frac{\mathrm{d}}{\mathrm{dz}}[\log (-\mathrm{z})] \\
& =\frac{1}{z}-\frac{(-1)}{(-z)}=\frac{1}{z}-\frac{1}{z}=0
\end{aligned}
$$

This suggests that $f=$ constant for all z.
(iv)

$$
\begin{aligned}
f(i) & =\log (\mathrm{i})-\log (-\mathrm{i}) \\
& =\log |i|+i \operatorname{Arg}(\mathrm{i})-\log |\mathrm{i}|-\mathrm{i} \operatorname{Arg}(-\mathrm{i}) \\
& =i(\operatorname{Arg}(\mathrm{i})-\operatorname{Arg}(-\mathrm{i})) \\
& =i\left(\frac{\pi}{2}-\left(\frac{-\pi}{2}\right)\right) \\
& =\underline{i \pi}
\end{aligned}
$$

(v)

$$
\begin{aligned}
f(-i) & =\log (-\mathrm{i})-\log (\mathrm{i}) \\
& =\log |-i|+i \operatorname{Arg}(-\mathrm{i})-\log |+\mathrm{i}|-\mathrm{i} \operatorname{Arg}(\mathrm{i}) \\
& =i(\operatorname{Arg}(-\mathrm{i})-\operatorname{Arg}(\mathrm{i})) \\
& =i\left(-\frac{\pi}{2}-\frac{\pi}{2}\right) \\
& =-i \pi
\end{aligned}
$$

(vi) At first sight (iv) $\neq(\mathrm{v})$ which contradicts (iii).

Resolution is: The cut in (ii) extends along all of the real axis , partitioning $\operatorname{Im}(z)>0$ from $\operatorname{Im}(z)<0$. The derivative is correst
but $\left\{\begin{array}{l}f=\operatorname{const}(1) \text { for } \operatorname{Im}(z)>0 \\ f=\operatorname{const}(2) \text { for } \operatorname{Im}(z)<0\end{array}\right.$
This can be seen for arbitrary points:
Take $z=a+i b$ with $\underline{b>0}$.
PICTURE

$$
\begin{aligned}
f(a+i b)= & \log |a+i b|+i \operatorname{Arg}(\mathrm{a}+\mathrm{ib}) \\
& -\log |-a-i b|-i \operatorname{Arg}(-\mathrm{a}-\mathrm{ib}) \\
= & i[\operatorname{Arg}(\mathrm{a}+\mathrm{ib})-\operatorname{Arg}(-\mathrm{a}-\mathrm{ib})] \\
= & i[\theta-(-\pi+\theta)] \\
= & \underline{i \pi}
\end{aligned}
$$

Now take $z=x+i y$ with $\underline{y>0}$.
PICTURE

$$
\begin{aligned}
f(x+i y)= & \log |x+i y|+i \operatorname{Arg}(\mathrm{x}+\mathrm{iy}) \\
& -\log |-x-i y|-i \operatorname{Arg}(-\mathrm{x}-\mathrm{iy}) \\
= & i[\operatorname{Arg}(\mathrm{x}+\mathrm{iy})-\operatorname{Arg}(-\mathrm{x}-\mathrm{iy})] \\
= & i[\alpha-(\pi-\alpha)] \\
= & -i \pi
\end{aligned}
$$

