Question

For each of the following functions, give a domain on which a continuous branch can be defined.

$$(i)$$
Log $(1+z)$, (ii) log $(1+z)$, (iii) Log $(1+z^2)$, $(iv)(z-1)^{\frac{1}{3}}$ $(v)(z^2-1)^{\frac{1}{3}}$.

Answer

(i) Log(1+z) has Arg(1+z) i.e., $-\pi < \arg(1+z) \le \pi$ so we need a branch cut from z=-1PICTURE

(ii)
$$\log(1+z) = \log|1+z| + i\underbrace{\arg(1+z)}_{\text{what arg though?}}$$

We need to define the branch of arg. Let's choose $0 < \arg(1+z) \le 2pi$, then we have a branch point at z = -1 and a cut between z = -1 and $\pm \infty$.

PICTURE

(iii) $\text{Log}(1+z^2) = \log|1+z^2| + i\text{Arg}(1+z^2)$ Branch points where $1+z^2=0 \Rightarrow z=\pm i$ Now for <u>Arg</u> we have a cut where PICTURE

(iv)
$$(z-1)^{\frac{1}{3}} = e^{\frac{1}{3}\log(z-1)} = e^{\frac{1}{3}\log|z-1| + \frac{i\arg(z-1)}{3}}$$

But again, we need to choose a branch. If we choose <u>Arg</u> we have $-\pi < \arg(z-1) \le \pi$ and we need a cut when (z-1) < 0, i.e., PICTURE

If we choose $0 < \arg(z) \le 2pi$ we need a cut when z - 1 > 0, i.e., PICTURE

(v) $(z^2-1)^{\frac{1}{3}}$ has branch points where

$$z^2 - 1 = 0 \Rightarrow z = \pm 1$$

Again we have to choose the branch. If $\underline{\mathbf{A}}$ rg we need cut where $(z^2-1)<0.$

PICTURE

If we choose $0 < \arg(z^2 - 1) \le 2\pi$ then we need a cut where $(z^2 - 1) > 0$ PICTURE

(Check this using the log-definitions.)