Question

For each of the following functions, give a domain on which a continuous branch can be defined.
(i) $\log (1+z)$, (ii) $\log (1+z)$, (iii) $\log \left(1+z^{2}\right),(i v)(z-1)^{\frac{1}{3}}(v)\left(z^{2}-1\right)^{\frac{1}{3}}$.

Answer
(i) $\underline{\log }(1+z)$ has $\operatorname{Arg}(1+z)$ i.e., $-\pi<\arg (1+z) \leq \pi$
so we need a branch cut from $z=-1$
PICTURE
(ii) $\log (1+z)=\log |1+z|+i \underbrace{\arg (1+z)}$
what arg though?
We need to define the branch of arg. Let's choose $0<\arg (1+z) \leq 2 p i$, then we have a branch point at $z=-1$ and a cut between $z=-1$ and $+\infty$.
PICTURE
(iii) $\log \left(1+z^{2}\right)=\log \left|1+z^{2}\right|+i \operatorname{Arg}\left(1+z^{2}\right)$

Branch points where $1+z^{2}=0 \Rightarrow z= \pm i$
Now for Arg we have a cut where
PICTURE
(iv) $(z-1)^{\frac{1}{3}}=e^{\frac{1}{3} \log (z-1)}=e^{\frac{1}{3} \log |z-1|+\frac{i \arg (z-1)}{3}}$

But again, we need to choose a branch. If we choose $\underline{\text { Arg we have }}$ $-\pi<\arg (z-1) \leq \pi$ and we need a cut when $(z-1)<0$, i.e.,

PICTURE

If we choose $0<\arg (z) \leq 2 p i$ we need a cut when $z-1>0$, i.e., PICTURE
(v) $\left(z^{2}-1\right)^{\frac{1}{3}}$ has branch points where
$z^{2}-1=0 \Rightarrow z= \pm 1$
Again we have to choose the branch. If $\underline{\operatorname{Arg}}$ we need cut where $\left(z^{2}-1\right)<$ 0.

PICTURE

If we choose $0<\arg \left(z^{2}-1\right) \leq 2 \pi$ then we need a cut where $\left(z^{2}-1\right)>0$ PICTURE
(Check this using the log-definitions.)

