Question

Find the particular integral for the differential equation

$$
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=1+2 t+t^{2}
$$

Answer

There are many Particular Integrals, but we use the method of undetermined coefficients.
Let

$$
\begin{aligned}
x^{*} & =a_{0}+a_{1} t+a_{2} t^{2} \\
\frac{d x^{*}}{d t} & =a_{1}+2 a_{2} t \\
\frac{d^{2} x^{*}}{d t^{2}} & =2 a_{2}
\end{aligned}
$$

We try to fix a_{0}, a_{1}, a_{2}
Substitute into equation

$$
\begin{align*}
\frac{d^{2} x^{*}}{d t^{2}}+3 \frac{d x^{*}}{d t}+2 x & =1+2 t+t^{2} \tag{A}\\
& =2 a_{2}+3\left(a_{1}+2 a_{2} t\right)+2\left(a_{0}+a_{1} t+a_{2} t^{2}\right) \\
& =\left[2 a_{2}+3 a_{1}+2 a_{0}\right]+\left[6 a_{2}+2 a_{1}\right] t+2 a_{2} t^{2} \tag{B}
\end{align*}
$$

Comparing coefficients in (A) and (B)

$$
\begin{array}{ll}
2 a_{2}+3 a_{1}+2 a_{0} & =1 \\
6 a_{2}+2 a_{1} & =2 \\
2 a_{2} & =1
\end{array}
$$

Solving gives $a_{2}=\frac{1}{2}, a_{1}=-\frac{1}{2}$ and $a_{0}=\frac{3}{4}$

