Question

Find the complementary function for the equation:

$$
\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=1+2 t+t^{2}
$$

Answer

The complementary function for $\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=1+2 t+t^{2}$
Is solution of $\frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}+2 x=0$
Auxiliary equation is $m^{2}+3 m+2=(m+2)(m+1)=0 \Rightarrow m=-2,-1$
Hence

$$
x_{c}=A e^{-2 t}+B e^{-t}
$$

with A, B arbitrary constants.

