Question

A methane molecule has one carbon atom C and four hydrogen atoms $H_{1}, H_{2}, H_{3}, H_{4}$. If we take the carbon atom to be centred at the origin $(0,0,0)$ then the hydrogen atoms $H_{1}, H_{2}, H_{3}, H_{4}$ have position vectors $R \hat{\mathbf{r}}_{\mathbf{1}}, R \hat{\mathbf{r}}_{\mathbf{2}}, R \hat{\mathbf{r}}_{\mathbf{3}}$, $R \hat{\mathbf{r}}_{4}$ respectively, where $\mathbf{r}_{\mathbf{1}}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{r}_{\mathbf{2}}=-\mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{r}_{\mathbf{3}}=-\mathbf{i}+\mathbf{j}-\mathbf{k}, \mathbf{r}_{4}=\mathbf{i}-\mathbf{j}-\mathbf{k}$ and R is a scalar known as the bond distance of the molecule. $R \hat{\mathbf{r}}_{1}, R \hat{\mathbf{r}}_{2}$, $R \hat{\mathbf{r}}_{\mathbf{3}}, R \hat{\mathbf{r}}_{\mathbf{4}}$ are called the bond vectors of the molecule.
(a) Calculate the unit vectors $\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}, \hat{\mathbf{r}}_{3}, \hat{\mathbf{r}}_{4}$ and hence write down the four bond vectors of the methane molecule.
(b) Find the angle between the bond vectors $R \hat{\mathbf{r}}_{1}$ and $R \hat{\mathbf{r}}_{2}$
(c) Calculate $R \hat{\mathbf{r}}_{1}-R \hat{\mathbf{r}}_{1}$ and hence express $\left|R \hat{\mathbf{r}}_{1}-R \hat{\mathbf{r}}_{1}\right|$, the distance between the hydrogen atoms H_{1} and H_{2}, in terms of R.

Answer

(a) $\left|\mathbf{r}_{i}\right|=\sqrt{3}$ so we have the unit vectors:

$$
\hat{\mathbf{r}}_{1}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right), \quad \hat{\mathbf{r}}_{2}=\left(\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right), \quad \hat{\mathbf{r}}_{3}=\left(\begin{array}{r}
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right), \quad \hat{\mathbf{r}}_{4}=\left(\begin{array}{r}
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right)
$$

and the corresponding bond vectors:

$$
R \hat{\mathbf{r}}_{1}=\left(\begin{array}{c}
\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}}
\end{array}\right), R \hat{\mathbf{r}}_{2}=\left(\begin{array}{r}
-\frac{R}{\sqrt{3}} \\
-\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}}
\end{array}\right), R \hat{\mathbf{r}}_{3}=\left(\begin{array}{r}
-\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}} \\
-\frac{R}{\sqrt{3}}
\end{array}\right), R \hat{\mathbf{r}}_{4}=\left(\begin{array}{r}
\frac{R}{\sqrt{3}} \\
-\frac{R}{\sqrt{3}} \\
-\frac{R}{\sqrt{3}}
\end{array}\right) .
$$

(b) Let θ be the angle between the bond vectors $R \hat{\mathbf{r}}_{1}$ and $R \hat{\mathbf{r}}_{2}$:

$$
\begin{gathered}
R \hat{\mathbf{r}}_{1} \cdot R \hat{\mathbf{r}}_{2}=\left(\begin{array}{c}
\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}}
\end{array}\right) \cdot\left(\begin{array}{c}
-\frac{R}{\sqrt{3}} \\
-\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}}
\end{array}\right)=-\frac{R^{2}}{3}-\frac{R^{2}}{3}+\frac{R^{2}}{3}=-\frac{R^{2}}{3} \\
\left|R \hat{\mathbf{r}}_{1}\right|=R, \quad\left|R \hat{\mathbf{r}}_{2}\right|=R \text { so that: } \\
\theta=\cos ^{-1}\left(\frac{R \hat{\mathbf{r}}_{1} \cdot R \hat{\mathbf{r}}_{2}}{\left|R \hat{\mathbf{r}}_{1}\right|\left|R \hat{\mathbf{r}}_{2}\right|}\right)=\cos ^{-1}\left(\frac{\frac{-R^{2}}{3}}{R^{2}}\right)=\cos ^{-1}\left(\frac{-1}{3}\right) \approx 109.47^{\circ}
\end{gathered}
$$

(c)

$$
R \hat{\mathbf{r}}_{1}-R \hat{\mathbf{r}}_{2}=\left(\begin{array}{c}
\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}}
\end{array}\right)-\left(\begin{array}{c}
-\frac{R}{\sqrt{3}} \\
-\frac{R}{\sqrt{3}} \\
\frac{R}{\sqrt{3}}
\end{array}\right)=\left(\begin{array}{c}
2 \frac{R}{\sqrt{3}} \\
2 \frac{R}{\sqrt{3}} \\
0
\end{array}\right)
$$

so the distance between the atoms H_{1} and H_{2} is given by

$$
\begin{aligned}
\left|R \hat{\mathbf{r}}_{1}-R \hat{\mathbf{r}}_{2}\right| & =\sqrt{\left(\frac{2 R}{\sqrt{3}}\right)^{2}+\left(\frac{2 R}{\sqrt{3}}\right)^{2}+0} \\
& =\sqrt{\frac{8 R^{2}}{3}}=2 R \sqrt{\frac{2}{3}}
\end{aligned}
$$

