Vector Functions and Curves One variable functions

Question

Show that $\underline{r}=\underline{r}_{0} \cos (\omega t)+\left(\underline{v}_{0} / \omega\right) \sin (\omega t)$ satisfies the initial-value problem.

$$
\begin{aligned}
\frac{d^{2} \underline{r}}{d t^{2}} & =-\omega^{2} \underline{r} \\
\underline{r}^{\prime}(0) & =\underline{v}_{0} \\
\underline{r}(0) & =\underline{r}_{0}
\end{aligned}
$$

In this case, describe the path $\underline{r}(t)$ and determine what happens to the paths if \underline{r}_{0} is perpendicular to \underline{v}_{0}.

Answer

$$
\begin{aligned}
\underline{r} & =\underline{r}_{0} \cos \omega t+\left(\frac{\underline{v}_{0}}{\omega}\right) \sin \omega t \\
\Rightarrow \frac{d \underline{r}}{d t} & =-\omega \underline{r}_{0} \sin \omega t+\underline{v}_{0} \cos \omega t \\
\Rightarrow \frac{d^{2} \underline{r}}{d t^{2}} & =-\omega^{2} \underline{r}_{0} \cos \omega t-\omega \underline{v}_{0} \sin \omega t \\
& =-\omega^{2} \underline{r} \\
\underline{r}(0) & =\underline{r}_{0},\left.\quad \frac{d \underline{r}}{d t}\right|_{t=0}=\underline{v}_{0}
\end{aligned}
$$

See that $\underline{r} \bullet\left(\underline{r}_{0} \times \underline{v}_{0}\right)$ for all t.
So the path lies in a plane through the origin with normal

$$
\underline{N}=\underline{r}_{0} \times \underline{v}_{0} .
$$

So choose the system of coordinates so that

$$
\begin{aligned}
\underline{r}_{0}=a \underline{i} & (a>0) \\
\underline{v}_{0}=\omega b \underline{i}+\omega c \underline{j} & (c>0)
\end{aligned}
$$

$\Rightarrow \underline{N}$ is in the direction of \underline{k}.
Parameterization of the path gives

$$
\begin{aligned}
& x=a \cos \omega t+b \sin \omega t \\
& y=c \sin \omega t
\end{aligned}
$$

The curve has the quadratic equation

$$
\frac{1}{a^{2}}\left(x-\frac{b y}{c}\right)^{2}+\frac{y^{2}}{c^{2}}=1
$$

so it is a conic section. As the path is bounded by

$$
|\underline{r}(t)| \leq\left|\underline{r}_{0}\right|+\left(\left|\underline{v}_{0}\right| / \omega\right)
$$

it must be an ellipse.
If \underline{r}_{0} is perpendicular to \underline{v}_{0}, then $b=0$, making the path an ellipse with equation

$$
(x / a)^{2}+(y / c)^{2}=1
$$

and semi-axes $a=\left|\underline{r}_{0}\right|$ and $c=\left|\underline{v}_{0}\right| / \omega$.

