Vector Functions and Curves One variable functions

Question

It is given that the position and velocity vectors of a moving object satisfy $\underline{v}(t)=2 \underline{r}(t)$ for all times t. If $\underline{r}(0)=\underline{r}_{0}$, find $\underline{r}(t)$ and $\underline{a}(t)$, the acceleration. Also determine the path of motion.
Answer

$$
\begin{aligned}
\frac{d \underline{r}}{d t} & =\underline{v}(t)=2 \underline{r}(t) \\
\underline{r}(0) & =\underline{r}_{0}
\end{aligned}
$$

And so,

$$
\begin{aligned}
\underline{r}(t) & =\underline{r}(0) e^{2 t}=\underline{r}_{0} e^{2 t} \\
\underline{a}(t) & =\frac{d \underline{v}}{d t}=2 \frac{d \underline{r}}{d t} \\
& =4 \underline{r}_{0} e^{2 t}
\end{aligned}
$$

The path is a half-line from the origin in the direction of \underline{r}_{0}.

