Vector Functions and Curves One variable functions

Question

A particle travels along the curve of intersection of the plane $x+y=2$ and the cylinder $z=x^{2}$ in the direction of increasing y. The particle has constant speed $v=3$, what is its velocity at the point $(1,1,1)$.
Answer
As the particle moves with increasing y on $x+y=2, z=x^{2}$.
\Rightarrow at time t

$$
\underline{r}=(2-g(t)) \underline{i}+g(t) \underline{j}+(2-g(t))^{2} \underline{k}
$$

where $g(t)$ is an increasing function of time t.
\Rightarrow

$$
\begin{aligned}
\underline{v} & =\frac{d g}{d t}[-\underline{i}+\underline{j}-2(2-g(t)) \underline{k}] \\
v & =\frac{d g}{d t} \sqrt{1+1+4(2-g(t))^{2}}=3
\end{aligned}
$$

As the speed is 3 .
When $g(t)=1$, we have

$$
\Rightarrow
$$

$$
\begin{gathered}
\frac{d g}{d t}=3 \sqrt{6}=\sqrt{3 / 2} \\
\underline{v}=\sqrt{\frac{3}{2}}(-\underline{i}+\underline{j}-2 \underline{k}) .
\end{gathered}
$$

