Vector Functions and Curves One variable functions

Question

A particle travels along the curve of intersection of the plane x + y = 2 and the cylinder $z = x^2$ in the direction of increasing y. The particle has constant speed v = 3, what is its velocity at the point (1, 1, 1).

Answer

As the particle moves with increasing y on x + y = 2, $z = x^2$. \Rightarrow at time t

$$\underline{r} = (2 - g(t))\underline{i} + g(t)\underline{j} + (2 - g(t))^{2}\underline{k}$$

where g(t) is an increasing function of time t.

 \Rightarrow

$$\underline{v} = \frac{dg}{dt} \left[-\underline{i} + \underline{j} - 2(2 - g(t))\underline{k} \right]$$

$$v = \frac{dg}{dt} \sqrt{1 + 1 + 4(2 - g(t))^2} = 3$$

As the speed is 3.

When g(t) = 1, we have

$$\frac{dg}{dt} = 3\sqrt{6} = \sqrt{3/2}$$

 \Rightarrow

$$\underline{v} = \sqrt{\frac{3}{2}}(-\underline{i} + \underline{j} - 2\underline{k}).$$