Vector Functions and Curves One variable functions

Question

Find the velocity, speed and acceleration of the particle with position given by $\underline{r}(t)$ at time t. Also determine the particles path.

$$
\underline{r}=a \cos t \sin t \underline{i}+a \sin ^{2} t \underline{j}+a \cos t \underline{k}
$$

Answer

Position:

$$
\begin{aligned}
\underline{r} & =a \cos t \sin t \underline{i}+a \sin ^{2} t \underline{j}+a \cos t \underline{k} \\
& =\frac{a}{2} \sin 2 t \underline{i}+\frac{a}{2}(1-\cos 2 t) \underline{j}-a \sin t \underline{k}
\end{aligned}
$$

Velocity: $\underline{v}=a \cos 2 t \underline{i}+a \sin 2 t \underline{j}-a \sin t \underline{k}$
Speed: $v=a \sqrt{1+\sin ^{2} t}$
Acceleration: $\underline{a}=-2 a \sin 2 t \underline{i}+2 a \cos 2 t \underline{j}-a \cos t \underline{k}$
Path: the path lies on the sphere $x^{2}+\bar{y}^{2}+z^{2}=a^{2}$, on the surface defined in terms of spherical polar coordinates by $\phi=\theta$, on the circular cylinder $x^{2}+y^{2}=a y$, and on the parabolic cylinder $a y+z^{2}=a^{2}$. Any two of these surfaces can be used to pin down the shape of the path.

