Vector Functions and Curves One variable functions

Question

An object travels on the curve given by the parameterization $\underline{r}=3 u \underline{i}+$ $3 u^{2} j+2 u^{3} \underline{k}$. Given that the object has a constant speed of 6 and that u is increasing, find the velocity and acceleration of the object at the point $(3,3,2)$.

Answer

$$
\begin{aligned}
\underline{r}= & 3 u \underline{i}+3 u^{2} \underline{j}+2 u^{3} \underline{k} \\
\underline{v}= & \frac{d u}{d t}\left(3 \underline{i}+6 u \underline{j}+6 u^{2} \underline{k}\right) \\
\underline{a}= & \frac{d^{2} u}{d t^{2}}\left(3 \underline{i}+6 u \underline{j}+6 u^{2} \underline{k}\right) \\
& +\left(\frac{d u}{d t}\right)^{2}(6 \underline{j}+12 u \underline{k})
\end{aligned}
$$

As the speed of the object of 6 and u is increasing,

$$
\begin{aligned}
6=|v| & =3 \frac{d u}{d t} \sqrt{1+4 u^{2}+4 u^{4}} \\
& =3\left(1+2 u^{2}\right) \frac{d u}{d t} \\
\frac{d u}{d t} & =\frac{2}{1+2 u^{2}}, \text { and } \\
\frac{d^{2} u}{d t^{2}} & =\frac{-2}{\left(1+2 u^{2}\right)^{2}} 4 u \frac{d u}{d t} \\
& =\frac{-16 u}{\left(1+2 u^{2}\right)^{3}}
\end{aligned}
$$

It can be seen that the object is as $(3,3,2)$ when $u=1$.
At this point $\frac{d u}{d t}=2 / 3$ and $\frac{d^{2} u}{d t^{2}}=-16 / 27$.
\Rightarrow

$$
\begin{aligned}
\underline{v} & =\frac{2}{3}\left(3 \underline{i}+6 u \underline{j}+6 u^{2} \underline{k}\right) \\
& =2 \underline{i}+4 \underline{j}+4 \underline{k} \\
\underline{a} & =-\frac{16}{27}(3 \underline{i}+6 \underline{j}+6 \underline{k})+\left(\frac{2}{3}\right)^{2}(6 \underline{j}+12 \underline{k}) \\
& =\frac{8}{9}(-2 \underline{i}-\underline{j}+2 \underline{k})
\end{aligned}
$$

