$\begin{array}{c} \text{Vector Functions and Curves} \\ \textbf{\textit{Applications}} \end{array}$

Question

What are the tangential and normal components of the Coriolis force on an object moving with (horizontal) velocity \underline{v} in the following situations

- (a) At the north pole.
- (b) At the south pole.
- (c) At the equator.

Answer

The Earth has angular velocity $\underline{\Omega}$ which points due north. If a particle is moving with horizontal velocity v, then the tangential and normal components of the Coriolis force (\underline{C}) are related by:

$$\underline{C}_T = -2\underline{\Omega}_N \times \underline{v}
\underline{C}_N = -2\underline{\Omega}_T \times \underline{v}$$

(a) At the north pole, $\underline{\Omega}_T = 0$ and $\underline{\Omega}_N = \underline{\Omega}$.

$$\Rightarrow \underline{C}_N = \underline{0}$$

$$\underline{C}_T = -2\underline{\Omega} \times \underline{v}$$

And so the Coriolis force is 90° east of \underline{v} .

(b) At the south pole, $\underline{\Omega}_T = 0$ and $\underline{\Omega}_N = \underline{\Omega}$.

$$\Rightarrow \underline{C}_N = \underline{0}$$

$$\underline{C}_T = -2\underline{\Omega} \times \underline{v}$$

And so the Coriolis force is 90° west of \underline{v} .

(c) At the equator, $\underline{\Omega}_N = \underline{0}$ and $\underline{\Omega}_T = \underline{\Omega}$.

$$\begin{array}{rcl} \underline{C}_T & = & \underline{0} \\ \underline{C}_N & = & -2\underline{\Omega} \times \underline{v} \end{array}$$

And so the Coriolis force is vertical.