Vector Functions and Curves Applications

Question

What are the tangential and normal components of the Coriolis force on an object moving with (horizontal) velocity \underline{v} in the following situations
(a) At the north pole.
(b) At the south pole.
(c) At the equator.

Answer

The Earth has angular velocity $\underline{\Omega}$ which points due north. If a particle is moving with horizontal velocity v, then the tangential and normal components of the Coriolis force (\underline{C}) are related by:

$$
\begin{aligned}
\underline{C}_{T} & =-2 \underline{\Omega}_{N} \times \underline{v} \\
\underline{C}_{N} & =-2 \underline{\Omega}_{T} \times \underline{v}
\end{aligned}
$$

(a) At the north pole, $\underline{\Omega}_{T}=0$ and $\underline{\Omega}_{N}=\underline{\Omega}$.

$$
\begin{array}{r}
\Rightarrow \underline{C}_{N}=\underline{0} \\
\underline{C}_{T}=-2 \underline{\Omega} \times \underline{v}
\end{array}
$$

And so the Coriolis force is 90° east of \underline{v}.
(b) At the south pole, $\underline{\Omega}_{T}=0$ and $\underline{\Omega}_{N}=\underline{\Omega}$.

$$
\begin{array}{r}
\Rightarrow \underline{C}_{N}=\underline{0} \\
\underline{C}_{T}=-2 \underline{\Omega} \times \underline{v}
\end{array}
$$

And so the Coriolis force is 90° west of \underline{v}.
(c) At the equator, $\underline{\Omega}_{N}=\underline{0}$ and $\underline{\Omega}_{T}=\underline{\Omega}$.

$$
\begin{aligned}
\underline{C}_{T} & =\underline{0} \\
\underline{C}_{N} & =-2 \underline{\Omega} \times \underline{v}
\end{aligned}
$$

And so the Coriolis force is vertical.

