Question

Show that $C(x)=\frac{1}{4}(x+2)$ defines a topological conjugacy between $f(x)=$ $4 x(1-x)$ and $g(x)=2-x^{2}$. Deduce that g has chaotic orbits.

$$
\begin{aligned}
& \text { Answer } \\
& \left.\begin{array}{l}
f \circ C(x)=4 \cdot \frac{1}{4}(x+2)\left(1-\frac{1}{4}(x+2)\right)=\frac{1}{4}(x+2)(2-x) \\
\left.C \circ g(x)=\frac{1}{4} 92-x^{2}+2\right)=\frac{1}{4}\left(4-x^{2}\right)=\frac{1}{4}(2+x)(2-x)
\end{array}\right\} \\
& \text { so } f \circ C=C \circ g \text {. }
\end{aligned}
$$

Since f has orbits which are bounded and not asymptotically periodic the same holds for g. For positive Lyapunov exponents we use the fact that $C^{\prime}(x)=\frac{1}{4}$ so from $g(x)=C^{-1}(f(C(x)))$ we get $g^{\prime}(x)=4 f^{\prime}(C(x))=$ $f^{\prime}(C(x))$, so the Lyapunov exponent of the g -orbit of x is the same as the Lyapunov exponent of the f-orbit of $C(x)$.
[We could not expect this for a general conjugacy C if e.g. $C^{\prime}(x) \rightarrow 0$ somewhere.]

