Question Represent a perfect shuffle of a pack of 52 cards by the function $f: K \longrightarrow K$ where $K=\{0,1,2,3, \cdots 51\}$ and f is given by

$$
\left.\begin{array}{rlr}
f(n) & =2 n & (0 \leq n \leq 25) \\
& =2 n-51 & (26 \leq n \leq 51)
\end{array}\right\} .
$$

Show that every card returns to its original position after 8 shuffles. What would be the effect of introducing 2 jokers to the pack?
Answer Since $2^{8}=256=5 \times 51+1$ it follows that $f: K \longrightarrow K$ (which we can describe as $f(n)=2 n \bmod 51)$ satisfies $f^{8}(n) \equiv n \bmod 51$ for every n. In fact there are two fixed points 0,51 and a 2 -cycle $\{17,34\}$ which every other n has period 8 (i.e. six 8 -cycles). With 54 cards we find that, apart from the fixed points 0,53 , every n has period 52 : there is one 52 -cycle.

