Question

Consider the tent map $t: I \longrightarrow I$ and its itineraries. Find that end-points of the subinterval of I consisting of all those points whose itinerary begins LRR, and likewise for LRRLRR. Find a point x_{n} whose itinerary begins LRRLRR \cdots LRR (n times). Hence find a point of period 3 for T, and verify directly from T that its period is 3 . Give a point of period 3 for the logistic map $G(x)=4 x(1-x)$.

Answer
For the tent map T the interval LRR is $\left[\frac{1}{4}, \frac{3}{8}\right]$ i.e. the third of 8 subintervals. Hence the interval LRRLRR is the third of 8 subintervals, i.e. $\left[\frac{18}{64}, \frac{19}{64}\right]$. Continuing we see that the point with itinerary LRRLRRLRR \cdots is:

$$
\begin{gathered}
\frac{2}{8}+\frac{2}{8^{2}}+\frac{2}{8^{3}}+\cdots=2 \frac{\frac{1}{8}}{1-\frac{1}{8}}=2 \cdot \frac{1}{7}=\frac{2}{7} \\
\left(=1-\left[\frac{5}{8}+\frac{5}{64}+\cdots\right]=1-5 \cdot \frac{1}{7}=1-\frac{5}{7}=\frac{2}{7} \cdot \sqrt{ }\right) \\
\text { Check: } T\left(\frac{2}{7}\right)=\frac{4}{7} ; T\left(\frac{4}{7}\right)=2\left(\frac{3}{7}\right)=\frac{6}{7} ; T\left(\frac{6}{7}\right)=2\left(\frac{1}{7}\right)=\frac{2}{7} .
\end{gathered}
$$

Since we have a conjugacy

with $C(x)=\frac{1}{2}(1-\cos \pi x)$ a point of period 3 for G is $C\left(\frac{2}{7}\right)=\frac{1}{2}\left(1-\cos \frac{2 \pi}{7}\right)$

