Question

What are the options for the Lyapunov exponents of bounded orbits of $f_a(x) = ax(1-x)$ when $e^{-1}(1) = 2.5$, $e^{-1}(1) = 3.1$?

Show that if $a > 2 + \sqrt{5}$ then every orbit has positive Lyapunov exponent (if it exists).

Answer

All orbits of f which remain bounded are attracted to the fixed point $x_* = 1 - \frac{1}{2.5} = 0.6$, except for 0 which remains at 0, and 1 with f(1) = 0. f'(0.6) = 2.5(1-1.2) = -0.5 and f'(0)-2.5 so the only options for Lyapunov exponents are $\ln(2.5)$ for (0,1) or $\ln(0.5) < 0$ for all other points of [0,1].

For g there are repelling fixed points at 0 and $x_* = 1 - \frac{1}{3.1} = 0.68$ approx, with Lyapunov exponents

 $\frac{\ln|g'(0)| = \ln(3.1) > 0}{\text{cycle } \{p,q\} \text{ with } p, \ q \text{ roots of } x^2 - 1.32x + 0.43.}$ and an attracting 2-

Then $(g^2)'(p) = g'(q)g'(p) = (3.1)^2(1 - 2q)(1 - 2p) = (3.1)^2(1 - 2(p + q) + 4pq) = (3.1)^2(1 - 2.54 + 1.72) = 0.77$, so the Lyapunov exponent for p and hence for all points which lie in (0,1) but do not land on x_* is $\frac{1}{2}\ln(0.77) = \ln(0.88)$ approx, < 0.

For h(x) = ax(1-x) with a > 4 the graph looks like:

so the Lyapunov exponent of any bounded orbit will be > 0 if the slope of the graph is everywhere > 1 or < -1.

Now the graph cuts the top of the square where $x = \frac{1}{2} \left(1 \pm \sqrt{1 - \frac{4}{a}} \right)$, where the slope is $h'(x) = \mp \sqrt{a^2 - 4a}$. This gives |h'(x)| > 1 when $a^2 - 4a > 1$: $a > 2 + \sqrt{5}$.