Question

What are the options for the Lyapunov exponents of bounded orbits of $f_{a}(x)=a x(1-x)$ whene (i) $\mathrm{a}=2.5$, (b) $\mathrm{a}=3.1$?
Show that if $a>2+\sqrt{5}$ then every orbit has positive Lyapunov exponent (if it exists).

Answer

All orbits of f which remain bounded are attracted to the fixed point $x_{*}=$ $1-\frac{1}{2.5}=0.6$, except for 0 which remains at 0 , and 1 with $f(1)=0$. $f^{\prime}(0.6)=2.5(1-1.2)=-0.5$ and $f^{\prime}(0)-2.5$ so the only options for Lyapunov exponents are $\underline{\ln (2.5)}$ for $(0,1)$ or $\underline{\ln (0.5)}<0$ for all other points of $[0,1]$.
For g there are repelling fixed points at 0 and $x_{*}=1-\frac{1}{3.1}=0.68$ approx, with Lyapunov exponents
 cycle $\{p, q\}$ with p, q roots of $x^{2}-1.32 x+0.43$.
Then $\left(g^{2}\right)^{\prime}(p)=g^{\prime}(q) g^{\prime}(p)=(3.1)^{2}(1-2 q)(1-2 p)=(3.1)^{2}(1-2(p+$ $q)+4 p q)=(3.1)^{2}(1-2.54+1.72)=0.77$, so the Lyapunov exponent for p and hence for all points which lie in $(0,1)$ but do not land on x_{*} is $\frac{1}{2} \ln (0.77)=\ln (0.88)$ approx, <0.

For $\mathrm{h}(\mathrm{x})=\operatorname{ax}(1-\mathrm{x})$ with $\mathrm{a}>4$ the graph looks like:

so the Lyapunov exponent of any bounded orbit will be >0 if the slope of the graph is everywhere >1 or <-1.
Now the graph cuts the top of the square where $x=\frac{1}{2}\left(1 \pm \sqrt{1-\frac{4}{a}}\right)$, where the slope is $h^{\prime}(x)=\mp \sqrt{a^{2}-4 a}$. This gives $\left|h^{\prime}(x)\right|>1$ when $a^{2}-4 a>1$: $a>2+\sqrt{5}$.

