QUESTION

(a) For the (zero-one) knapsack problem

$$
\begin{array}{ll}
\operatorname{maximize} & z=\sum_{i=1}^{n} c_{i} x_{i} \\
\text { subject to } & \sum_{i=1}^{n} a_{i} x_{i} \leq b \\
& x_{i}=0 \text { or } 1 \text { for } i=1, \ldots, n
\end{array}
$$

where a_{i} and c_{i} are positive for $i=1, \ldots, n$, and $\sum_{i=1}^{n} a_{i}>b$, describe a procedure for solving the linear programming relaxation. Also, prove that your procedure provides an optimal solution of the linear programming relaxation.
(b) Use a branch and bound algorithm to solve the following (zero-one) knapsack problem. In your algorithm, always choose a node of the search tree with the largest upper bound to be explored next.

$$
\begin{array}{ll}
\text { Maximize } & z=18 x_{1}+25 x_{2}+15 x_{3}+8 x_{4}+11 x_{5}+4 x_{6}+2 x_{7} \\
\text { subject to } & 9 x_{1}+13 x_{2}+8 x_{3}+5 x_{4}+7 x_{5}+5 x_{6}+3 x_{7} \leq 28 \\
& x_{i}=0 \text { or } 1 \text { for } i=1, \ldots, 7
\end{array}
$$

ANSWER

(a) Index the variables so that $\frac{c_{1}}{a_{1}} \geq \ldots \geq \frac{c_{n}}{a_{n}}$. Find index k such that $\sum_{i=1}^{k} a_{i}<b \leq \sum_{i=1}^{k+1} a_{i}$.
The solution of the linear programming relaxation is

$$
\begin{aligned}
x_{i} & =1 \text { for } i=1, \ldots, k \\
x_{k+1} & =\frac{\left(b-\sum_{i=1}^{k} a_{i}\right)}{a_{k+1}} \\
x_{i} & =0 \text { for } i=k+2, \ldots n
\end{aligned}
$$

The solution value is

$$
z=\sum_{i=1}^{k} c_{i}+c_{k+1} \frac{\left(b-\sum_{i=1}^{k}\right)}{a_{k+1}}
$$

The dual problem is

Minimize $\quad z_{D}=b_{y}+\sum_{i=1}^{n} z_{i}$
subject to $y \geq 0, z_{i} \geq 0 i=1, \ldots n$

$$
a_{i} y+z_{i} \geq c_{i} i=1, \ldots, n
$$

Consider the dual solution

$$
\begin{aligned}
y & =\frac{c_{k+1}}{a_{k+1}} \\
z_{i} & =c_{i}-\frac{a_{i} c_{k+1}}{a_{k+1}} i=1, \ldots, k \\
z_{i}=0 i=k+1, \ldots, n &
\end{aligned}
$$

Note that $z_{i} \geq 0$ by the indexing of the variables

$$
\begin{aligned}
a_{i} y+z_{i} & =c_{i} \text { for } i=1, \ldots k \\
a_{i} y+z_{i} & =a_{i} \frac{c_{k+1}}{a_{k+1}} \geq c_{i} \text { for } i=k+1, \ldots, n
\end{aligned}
$$

so the solution is feasible.

$$
z_{D}=b \frac{c_{k+1}}{a_{k+1}}+\sum_{i=1}^{k} c_{i}-\frac{c_{k+1}}{a_{k+1}} \sum_{i=1}^{k} a_{i}=z
$$

Therefore the primal and dual solutions are optimal.

(b)

Node $1 \quad U B=18+25+\left\lfloor\frac{3}{4} 15\right\rfloor=54$

$$
L B=43
$$

Node $2 U B=18+25+8+\left\lfloor 11 \frac{1}{7}\right\rfloor=52$
$L B=51$
Node $3 U B=18+\left\lfloor\frac{11}{13} 25\right\rfloor+15=54$
$L B=33$
Node $4 U B=18+8+\left\lfloor\frac{6}{7} 11\right\rfloor+15=50$ $L B=41$
Node $5 \quad U B=18+8+\left\lfloor\frac{7}{9} 18\right\rfloor+15=50$ $L B=41$
Node $6 \quad U B=8+\left\lfloor\frac{2}{7} 11\right\rfloor+25+15=51$ $L B=48$
Node $8 \quad U B=18+25+8+\left\lfloor\frac{1}{5} 4\right\rfloor=51$ $L B=51$
Node $9 \quad U B=18+\left\lfloor\frac{12}{13} 25\right\rfloor+11=52$ $L B=29$
Node $10 \quad U B=18+8+4+\left\lfloor\frac{2}{3} 2\right\rfloor+11=42$ $L B=41$
Node $11 \quad U B=\left\lfloor\frac{8}{9} 18\right\rfloor+25+11=52$
$L B=36$
Node $12 U B=8+\left\lfloor\frac{3}{5} 4\right\rfloor+25+11=46$ $L B=44$

Optimal solution $x_{1}=x_{2}=x_{4}=1 x_{3}=x_{5}=x_{6}=0 z+51$

