QUESTION

(a) Define the following terms
(i) direct product,
(ii) isomorphism,
(iii) normal subgroup.
(b) Show that the kernel of a homomorphism is a normal subgroup (you may assume that it is a subgroup).
(c) Let G be a group with identity element e and let H and K be subgroups of G with $H \cap K=\{e\}$. Show that if $h k=k h$ for any $h \in H$ and any $k \in K$ then the function $f: H \times K \longrightarrow G$ given $f(h, k)=h k$ is an injective homomorphism. Show that if G is a group in which every element has order 2 then G is abelian, and deduce that any two nonidentity elements of G generate a subgroup isomorphic to the Klein 4 -group.

Give an example to show that an abelian group can contain two elements of order 3 without containing a subgroup isomorphic to $Z_{3} \times Z_{3}$.

ANSWER

(a) (i) $(G, *),(H,$.$) are groups.$
$\{(g, h) \mid g \in G, h \in H\}=G \times H$ with $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} *\right.$ $\left.g_{2}, h_{1} \cdot h_{2}\right)$ is the direct product.
(ii) An isomorphism is a bijective function $f: G \longrightarrow H$ with $f(g * k)=$ $f(g) . f(k) \forall g, k \in G$.
(iii) A subgroup $H<G$ is normal if $g^{-1} H g=H \forall g \in G$.
(b)

$$
\begin{aligned}
f\left(g^{-1} k g\right) & =f\left(g^{-1} f(k) f(g) \forall g \in G, k \in\right. \text { kernel } \\
& =f\left(g^{-1}\right) e_{H} f(g) \\
& =f\left(g^{-1}\right) f(g) \\
& =f\left(g^{-1} g\right)=f\left(e_{G}\right)=e_{H}
\end{aligned}
$$

(c) $f(h, k)=e \Leftrightarrow h k=e \Leftrightarrow h=k^{-1}$. But $h=k^{-1} \Rightarrow h \in H \cap K=\{e\}$ so $h=e$.

Similarly $k=e$ and $\operatorname{Ker}(f)=\{(e, e)\}$ and f is injective.

$$
\begin{aligned}
f\left(\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)\right) & =f\left(h_{1} h_{2}, k_{1} k_{2}\right) \\
& =h_{1} h_{2} k_{1} k_{2} \\
& =h_{1} k_{1} h_{2} k_{2} \\
& =f\left(h_{1}, k_{1}\right) f\left(h_{2}, k_{2}\right)
\end{aligned}
$$

If every element in G has order 2 then $(g h)^{2}=e \forall g, h \in G$ and $g=$ $g^{-1}, h=h^{-1}$ so $e=(g h)^{2}=g h g h=g h g^{-1} h^{-1} \Rightarrow g h=h g \forall g, h \in G$. Now $\langle g, h\rangle=\langle g\rangle \times\langle h\rangle$ since the map $f:\langle g \times\rangle \longrightarrow G$ is an isomorphism onto its image.
C_{3} contains 2 elements of order 2 but is not isomorphic to $c_{3} \times C_{3}$

