QUESTION

- (a) Define the following terms
 - (i) direct product,
 - (ii) isomorphism,
 - (iii) normal subgroup.
- (b) Show that the kernel of a homomorphism is a normal subgroup (you may assume that it is a subgroup).
- (c) Let G be a group with identity element e and let H and K be subgroups of G with $H \cap K = \{e\}$. Show that if hk = kh for any $h \in H$ and any $k \in K$ then the function $f: H \times K \longrightarrow G$ given f(h,k) = hk is an injective homomorphism. Show that if G is a group in which every element has order 2 then G is abelian, and deduce that any two non-identity elements of G generate a subgroup isomorphic to the Klein 4-group.

Give an example to show that an abelian group can contain two elements of order 3 without containing a subgroup isomorphic to $Z_3 \times Z_3$.

ANSWER

- (a) (i) (G,*), (H,.) are groups. $\{(g,h)|g \in G, h \in H\} = G \times H \text{ with } (g_1,h_1)(g_2,h_2) = (g_1 * g_2,h_1.h_2) \text{ is the direct product.}$
 - (ii) An isomorphism is a bijective function $f: G \longrightarrow H$ with $f(g*k) = f(g).f(k) \forall g, k \in G$.
 - (iii) A subgroup H < G is normal if $g^{-1}Hg = H \forall g \in G$.

(b)

$$f(g^{-1}kg) = f(g^{-1}f(k)f(g)\forall g \in G, k \in \text{kernel}$$

$$= f(g^{-1})e_H f(g)$$

$$= f(g^{-1})f(g)$$

$$= f(g^{-1}g) = f(e_G) = e_H$$

(c) $f(h,k) = e \Leftrightarrow hk = e \Leftrightarrow h = k^{-1}$. But $h = k^{-1} \Rightarrow h \in H \cap K = \{e\}$ so h = e.

Similarly k = e and $Ker(f) = \{(e, e)\}$ and f is injective.

$$f((h_1, k_1)(h_2, k_2)) = f(h_1h_2, k_1k_2)$$

$$= h_1h_2k_1k_2$$

$$= h_1k_1h_2k_2$$

$$= f(h_1, k_1)f(h_2, k_2)$$

If every element in G has order 2 then $(gh)^2 = e \forall g, h \in G$ and $g = g^{-1}$, $h = h^{-1}$ so $e = (gh)^2 = ghgh = ghg^{-1}h^{-1} \Rightarrow gh = hg \forall g, h \in G$. Now $\langle g, h \rangle = \langle g \rangle \times \langle h \rangle$ since the map $f : \langle g \times \rangle \longrightarrow G$ is an isomorphism onto its image.

 C_3 contains 2 elements of order 2 but is not isomorphic to $c_3 \times C_3$