QUESTION

Decide for each of the following statements whether or not it is true giving a brief explanation of your answer.
(i) For each positive integer $n \geq 2$ the symmetric group S_{n} has a subgroup of index 2 .
(ii) The function $f: D_{n} \longrightarrow Z_{2}$ defined by $f(g)=1$ if and only if g is a rotation (The set of rotations includes the identity) and $f(g)=0$ if and only if g is a reflection is a homomorphism.
(iii) There are precisely 48 elements in the cyclic group Z_{180} with the property that they each generate the whole group.
(iv) Given any finite group G there is a positive integer n such that G is isomorphic to a subgroup of S_{n}.
(v) Every group of even order is abelian.
(vi) If G is a finite group of order n then $g^{n}=e$ for every element $g \in G$.

ANSWER
(i) True, $A_{n}<S_{n}$ has index 2
(ii) False, $f\left(\rho^{2}\right)=1$ but $f(\rho)+f(\rho)=0$
(iii) True, Number of generators of Z_{180} is $\left.\phi(18)\right) .180=2^{2}$.5.9 so $\phi(180)=$ $\phi\left(2^{2}\right) \cdot \phi(5) \cdot \phi(9)=1 \cdot 4.6=48$
(iv) True, Cayley's theorem gives an isomorphism from G to a subgroup of S_{g} and thus into $S_{|G|}$.
(v) False, D_{3} is not abelian but has order 6
(vi) True, By Lagrange's theorem the order d of g divides n so $g^{n}=\left(g^{d}\right)^{\frac{n}{d}}=$ e.

