QUESTION

(a) The element σ is an element of the finite permutation group S_{n}. Explain the relationship between the cycle structure if σ and its order, and use this to find the smallest positive integer n such that S_{n} contains an element of order 12.
List the possible cycle structures for elements of order 14 in S_{9} and use this to find the number of such elements. (You are NOT required to list them all.)
(b) Express the permutation $\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 4 & 7 & 6 & 3 & 5 & 1 & 9 & 8\end{array}\right)$ in disjoint cycle notation and as a product of transpositions. Fine the order and sign of σ and calculate the order of σ^{2000}.
(c) Say what it means for a permutation in the symmetric group S_{n} to be even, and show that a permutation is even if and only if it can be written as a product of 3 -cycles.

ANSWER

(a) The order of σ is the least common multiple of the lengths of its cycles. Ignoring 1-cycles the possible cycle structures for an element of order 12 are [12], $[3,4]$ and the smallest n such that S_{n} contains an element of order 12 is 7 .
$[2,7]$ is the only possible cycle structure. There are $\frac{9.8}{2}$ possible transpositions and 6 ! different 7 - cycles so $36.720=25,920$ different elements of order 14 .
(b) $\sigma=(1246537)(89)=(12)(24)(46)(65)(53)(37)(89)$ which has order 14 and sign -1 .
$2000=(14.142)+12$ so $\sigma^{2000}=\sigma^{12}$ and σ^{12} has order 7.
(c) A permutation is even \Leftrightarrow it can be written as a product of an even number of transpositions.
Any 3-cycle $\left(\begin{array}{ll}x & y \\ z\end{array}\right)$ can be written as $(x y z)=(x y)(y z)$ so any product of 3 -cycles is even.
Any pair of transpositions can be written as a 3-cycle and any poair $x y)(u v)$ can be written as the product $(x y)(y u)(y u)(u v)$ so as the product $(x y u)(y u v)$.

