Question

(a) Solve the following system of equations

$$
\begin{aligned}
x+2 y+2 z & =11 \\
2 x-y+z & =3 \\
-4 x+7 y+z & =13
\end{aligned}
$$

Give a geometrical interpretation.
(b) Find all the 2×2 matrices A with the property that

$$
A^{2}=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right)
$$

Hence find all the solutions X of the equation

$$
X^{2}+2 X=\left(\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right)
$$

where X is a 2 x 2 matrix.

Answer

So $x+2 y+2 z=11$
$5 y+3 z=19$
Let $z=t$ then $y=\frac{19-3 t}{5}$
Thus $x=11-2 t-2\left(\frac{19-3 t}{5}\right)=\frac{55-10 t-38+6 t}{5}=\frac{17-4 t}{5}$
So $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}\frac{17}{5} \\ \frac{19}{5} \\ 0\end{array}\right)+t\left(\begin{array}{c}\frac{-4}{5} \\ \frac{-3}{5} \\ 1\end{array}\right)$
This system represents three plans meeting in a common line, whose equation is the solution.
(b) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$

Thus

$$
\begin{align*}
a^{2}+b c & =4 \tag{1}\\
b(a+d) & =0 \tag{2}\\
c(a+d) & -0 \tag{3}\\
d^{2}+b c & =1 \tag{4}
\end{align*}
$$

(1) and (4) imply that $a^{2} \neq d^{2}$ So $a+d \neq 0$. Thus $b=c=0$ and $a= \pm 2$ and $d= \pm 1$

So there are 4 possibilities:

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
-2 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right), \quad\left(\begin{array}{cc}
-2 & 0 \\
0 & -1
\end{array}\right) .
$$

$X^{2}+2 X=\left(\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right)$
if and only if $X^{2}+2 X+I=\left(\begin{array}{cc}4 & 0 \\ 0 & 1\end{array}\right)$
Thus $(X+I)^{2}=\left(\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right)$
$X+I=$ any of the 4 above.
So $X=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right), \quad\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right), \quad\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right), \quad\left(\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right)$.

