## Question

Find two different solutions (one can come from the general solution and the other from a singular solution) to the equation

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$$

which satisfy the condition y(1) = 1/4. (\*)

## Answer

First rewrite in standard form.  $y = x \frac{dy}{dx} - \left(\frac{dy}{dx}\right)^2$ , now differentiate to get  $\frac{dy}{dx} = \frac{dy}{dx} + x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} \frac{d^2y}{dx^2} \Rightarrow 0 = \frac{d^2y}{dx^2} \left(x - 2 \frac{dy}{dx}\right)$  hence

ii) 
$$x - 2\frac{dy}{dx} = 0$$
 and  $y = x\frac{dy}{dx} - \left(\frac{dy}{dx}\right)^2$   
eliminate  $\frac{dy}{dx} \Rightarrow y = \frac{x^2}{4}$  this is a singular solution.  
 $y(1) = \frac{1}{4} \Rightarrow \text{singular solution } y = \frac{x^2}{4} \text{is valid.}$   
 $\Rightarrow \text{general solution } y = cx - c^2 \text{with } \frac{1}{4} = A - A^2$   
 $\Rightarrow A = \frac{1}{2} \text{ hence } y = \frac{x}{2} - \frac{1}{4} \text{ is a solution.}$