Question

Find two different solutions (one can come from the general solution and the other from a singular solution) to the equation

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0 \tag{*}
\end{equation*}
$$

which satisfy the condition $y(1)=1 / 4$.

Answer
First rewrite in standard form. $y=x \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}$, now differentiate to get $\frac{d y}{d x}=\frac{d y}{d x}+x \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x} \frac{d^{2} y}{d x^{2}} \Rightarrow 0=\frac{d^{2} y}{d x^{2}}\left(x-2 \frac{d y}{d x}\right)$
hence
i) $\frac{d^{2} y}{d x^{2}}=0$ and $\quad y=x \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}$
$\frac{d y}{d x}=c \quad \Rightarrow \quad y=c x-c^{2} \quad$ this is the general solution.
ii) $x-2 \frac{d y}{d x}=0$ and $y=x \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}$
eliminate $\frac{d y}{d x} \Rightarrow y=\frac{x^{2}}{4}$ this is a singular solution.

$$
\begin{aligned}
y(1)=\frac{1}{4} & \Rightarrow \text { singular solution } y=\frac{x^{2}}{4} \text { is valid. } \\
& \Rightarrow \text { general solution } y=c x-c^{2} \text { with } \frac{1}{4}=A-A^{2} \\
& \Rightarrow A=\frac{1}{2} \text { hence } y=\frac{x}{2}-\frac{1}{4} \text { is a solution. }
\end{aligned}
$$

