QUESTION

The arithmetic function i is defined by $i(n)=\left\{\begin{array}{ll}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{array}\right.$. Prove
(i) i is multiplicative.
(ii) $i * f=f * i=f$ for all arithmetic function f.
(iii) If $f(1) \neq 0$, we can find an arithmetic function g satisfying $f * g=$ $g * f=i$.
[Note: from questions 6 and 7 , we can see that the set of all arithmetic functions f with $f(1) \neq 0$ form an abelian group under *. This allows us to apply results from group theory to the study of arithmetic functions.] ANSWER
(i) If $\operatorname{gcd}(m, n)=1$, then either $m=n=1$, or at least one of m and n is >1. In the latter case $m n>1$. Thus $i(m n)= \begin{cases}1 & \text { if } m=n=1 \\ 0 & \text { otherwise }\end{cases}$
But if at least one of m, n is >1, then at least one of $i(m), i(n)$ is equal to 0 , and so their product is 1 . Thus in all cases $i(m n)=i(m) i(n)$ and i is multiplicative.
(ii) By part (ii) of question $6, i * f=f * i$, so it will be enough to proof $i * f=f$.
Now $i * f(n)=\sum_{d \mid n} i(d) f\left(\frac{n}{d}\right)$. But $i(d)=0$ unless $d=1$, so the only term contributing to this sum is the first, so we get $i * f(n)=$ $i(1) f\left(\frac{n}{1}\right)=1 . f(n)=f(n)$, This is true for all values of n, so $i * f=f$, as required.
(iii) Again, question 6(ii) tells us that we need only find g such that $f * g=i$. As g is an arithmetic function, to describe g we need to specify its values on the natural numbers. We will find g by describing $g(1), g(2), g(3), \ldots$ and eventually getting $g(n)$ in terms of the values already spacified for $g(k)$ with $k<n$.
We first want $f * g(1)=i(1)=1$. Now $(f * g)(1)=\sum_{d \mid 1} f(d) g\left(\frac{1}{d}\right)$ and as the onlt divisor of 1 is 1 , this says $(f * g)(1)=f(1) g(1)$. Thus if we define $g(1)=f(1)^{-1}$ (allowable as $\left.f(1) \neg 0\right)$, we will have $f * g(1)=i(1)$. Next we want $f * g(2)=i(2)=0$, We have $f * g(2)=\sum_{d \mid 2} f(d) g\left(\frac{2}{d}\right)=$ $f(1) g(2)+f(2) g(1)$. We have already defined $g(1)$, so we may define $g(2)=\frac{-f(2) g(1)}{f(1)}=\frac{-f(2)}{f(1)^{2}}$. This ensures that $f * g$ and i agree at 1 and 2.

Similarly we want $f * g(3)=i(3)=0$, i.e. $f(1) g(3)+f(3) g(1)=0$, so again define $g(3)=\frac{-f(3) g(1)}{f(1)}=\frac{-f(3)}{f(1)^{2}}$. To get $f * g(4)=i(4)=0$ we need $0=f * g(4)=\sum_{d_{4}} f(d) g\left(\frac{4}{d}\right)=f(1) g(4)+f(2) g(2)+f(4) g(1)$. (as the divisors of 4 are 1, 2 and 4). This will give $g(4)=\frac{-f(2) g(2)-f(4) g(1)}{f(1)}$, and as $g(1)$ and $g(2)$ are already defined this tells us how to define $g(4)$.
We continue in this way until $g(1), g(2), \ldots g(n-1)$ have all been defined. To define $g(n)$ we note that we want $f * g(n)=i(n)=0$, so we want $0=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)=f(1) g(n)+\sum_{d>1, d \mid n} f(d) g\left(\frac{n}{d}\right)$. Now all the terms in the sum $\sum_{d>1, d \mid n} f(d) g\left(\frac{n}{d}\right)$ are already specified, so we may now define $g(n)=\frac{-1}{f(1)} \sum_{d>1, d \mid n} f(d) g\left(\frac{n}{d}\right)$.
In this way the value of $g(n)$ is defined inductively for all n, giving us an arithmetic function g with the properties required.
[It is worth noting that an arithmetic function is any function whose domain in N, The functions d, σ, σ_{1} etc, that we've considered happen to take values in N, but this is not a general requirement. If the function f we start with here has $f(1) \neq 1$, the values of g will not be integers, but this does not matter.]

