QUESTION

An integer n is called 3 -perfect if $\sigma(n)=3 n$. Show that 120 is 3 -perfect. Find all 3 -perfect numbers n of the form $2^{k} .3 . p$ where p is an odd prime.
[Hints:
(i) Treat the case $p=3$ separately, so that you can multiplicity to calculate $\sigma(n)$.
(ii) Evaluate $\sigma(n)$ and use the equation $\sigma(n)=3 n$ to get an expression for 2^{k} in terms of p. Hence deduce $p \leq 8$.
(iii) Deal with the possible values of p separately.]

ANSWER
$\sigma(120)=\sigma\left(2^{3}, 3,5\right)=\frac{\left(2^{4}-1\right)}{(2-1)} \cdot\left(3^{2}-1\right) \cdot\left(5^{2}-1\right)=15 \cdot \frac{8}{2} \cdot \frac{24}{4}=15 \cdot 4 \cdot 6=2^{3} \cdot 3^{2} \cdot 5=$ $3 .\left(2^{3} .3 .5\right)=3.120$.
Thus 120 is 3-perfect.
Now suppose $n=2^{k}$.3. p is 3-perfect.
CASE 1: $p=3$, so $n=2^{k} \cdot 3^{2}$ and $\sigma(n)=\frac{2^{k+1}-1}{2-1} \cdot \frac{3^{3}-1}{3-1}=\left(2^{k+1}-1\right) \cdot \frac{26}{2}=$ 13. $\left(2^{k+1}-1\right)$. As $\sigma(n)=3 n$, we have $13\left(2^{k+1}-1\right)=3.2^{k} \cdot 3^{2}=2^{k} .3^{3}$ which is clearly impossible, as the prime 13 divides the left-hand side but not the right.
CASE 2: $p \neq 3$, so $n=2^{k} .3 . p$, and $\sigma(n)=\frac{2^{k+1}-1}{2-1} \cdot \frac{3^{2}-1}{3-1} \cdot \frac{p^{2}-1}{p-1}=\left(2^{k+1}-1\right) \cdot 4 \cdot(p+$ 1) (using $p^{2}-1=(p-1)(p+1)$.) AS $\sigma(n)=3 n,\left(2^{k+1}-1\right) \cdot 4 \cdot(p+1)=$ $2^{k} .3^{2} . p$. Thus $2^{k}\left(3^{2} p-2.4 .(p+1)\right)=-4(p+1)\left(\right.$ using $\left.2^{k+1}=2.2^{k}\right)$, i.e. $2^{k}(p-8)=-4(p+1)$. As the right-hand side of this equation is negative, so is the left, so $p<8$. As we know p is odd, and $p \neq 3$, only $p=5$ and $p=7$ are possible.
If $p=5$. the equation $2^{k}(p-8)=-4(p+1)$ gives $2^{k}(-3)=-4.6$, giving $k=3$ and $n=2^{3} .3 .5=120$ (the case we've already dealt with.)
If $p=7$, the equation $2^{k}(p-8)=-4(p+1)$ gives $2^{k}(-1)=-4.8$, giving $k=5$. Thus $n=2^{5} \cdot 3 \cdot 7=671$, so 120 and 672 are the only 3 -perfect numbers of the form 2^{k}.3.p where p is an odd prime.

