QUESTION

Prove that if f and g are multiplicative, then so is the function $f . g$ defined by $f . g(n)=f(n) g(n)$ for all $n \in N$.
If $g(n) \neq 0$ for all $n \in Z$, prove that the function $\frac{f}{g}$ defined by $\frac{f}{g}(n)=\frac{f(n)}{g(n)}$ for all $n \in N$ is also multiplicative.
Deduce that the function $h(n)$ defined by $h(n)=\sum_{d \mid n} \frac{\mu(d) d \mid(d)}{\sigma(d)}$ is multiplicative. By finding the value of h when n is a prime power, find a formula for $h(n)$ in terms of the prime factorisation of n.
ANSWER
Let $\operatorname{gcd}(m \cdot n)=1$. Then $f \cdot g(m n)=f(m n) \cdot g(m n)=f(m) f(n) \cdot g(m) g(n)$ as f and g are both multiplicative. But $f . g(m) . f . g(n)=f(m) g(m) f(n) g(n)$ by definition, so comparing this with the equation above, $f . g(m n)=f . g(m) f . g(n)$, showing that $f . g$ is multiplicative, as required.
Similarly, if $\operatorname{gcd}(m, n)=1, \frac{f}{g}(m n)=\frac{f(m n)}{g(m n)}=\frac{f(m) f(n)}{g(m) g(n)}$ by multiplicativity of f and g. But $\frac{f}{g}(m) \cdot \frac{f}{g}(n)=\frac{f(m)}{g(m)} \cdot \frac{f(n)}{g(n)}$, and again, comparing with the equation above, $\frac{f}{g}(m n)=\frac{f}{g}(m) \cdot \frac{f}{g}(n)$, so $\frac{f}{g}$ is multiplicative.
Now μ, d and σ are all multiplicative, so by the above $\frac{\mu d}{\sigma}$ is multiplicative too, and $h(n)$ is given by $h(n)=\sum_{d \mid N}\left(\frac{\mu \cdot d}{\sigma}\right)(d)$, so $h(n)$ is multiplicative by th.8.1.
Now $h\left(p^{k}\right)=\sum_{d \mid p^{k}}\left(\frac{\mu d}{\sigma}\right)(d)=\sum_{d \mid p^{k}} \frac{\mu(d) d(d)}{\sigma(d)}$. If $d \mid p^{k}$, then d is a power of p, so by definition of $\mu, \mu(d)$ will be 0 unless $d=1$ or $d=p$. Thus

$$
\begin{aligned}
h\left(p^{k}\right)= & \frac{\mu(1) d(1)}{\sigma(1)}+\frac{\mu(p) d(p)}{\sigma(p)} \text { (all other terms vanishing) } \\
= & 1-\frac{2}{p+1}(\operatorname{using} \mu(1)=d(1)=\sigma(1)=1, \mu(p)=-1, d(p)=2 \\
& \sigma(p)=p+1) \\
= & \frac{p-1}{p+1}
\end{aligned}
$$

Thus by multiplicativity $h(n) \prod_{p \mid n} \frac{(p-1)}{(p+1)}$.

