QUESTION

Prove that if $f(n)$ is a multiplicative function such that $f(n) \neq 0$ for at least one value of n, then $f(1)=1$.
ANSWER
Suppose $f(n) \neq 0$. Now $\operatorname{gcd}(1, n)=1$, so by the multiplicative property, $f(n .1)=f(n) \cdot f(1)$, i.e. $f(n)=f(n) f(1)$, so as $f(n) \neq 0$, we may conclude $f(1)=1$.

