QUESTION

Let p be a prime number and suppose that $n! = p^e s$ with HCT(p, s) = 1 where n! is the product of the integers $1, 2, \ldots, n$, as usual.

(i) Show that

$$e = \left\lceil \frac{n}{p} \right\rceil + \left\lceil \frac{n}{p^2} \right\rceil + \left\lceil \frac{n}{p^3} \right\rceil + \ldots + \left\lceil \frac{n}{p^r} \right\rceil + \ldots$$

where [x] denotes the greatest integer less than of equal to x.

(ii) If $n = a_0 + a_1 p + a_2 p^2 + \ldots + a_k p^k$, where $0 \le a_i \le p - 1$ for each i, prove that e in part (i) is given by

$$e = (p-1)^{-1}(n - a_0 - a_1 - a_2 - \dots - a_k).$$

(iii) Show that the largest power of 2 which will divide the binomial coefficient

$$\left(\begin{array}{c}2^t\\2^{t-1}-2\end{array}\right)$$

is
$$2^{t-1}$$
, if $t \ge 3$.

ANSWER

(i) Consider the numbers 1, 2, ..., n. Their product is n!. We can calculate e by taking each of these numbers, finding the exact power of p which divides it and then e is the sum of all these exponents. However, we are going to calculate this sum another way. Consider th following array:

The first row consists of all multiples of p less than or equal to n. The second row is all the multiples of p^2 less than or equal to n and so on.

1

A number which is less than or equal to n and is exactly divisible by p^s will appear exactly s times in the array- once on each of the first s rows. Hence the number of numbers in this array is exactly the sum of the exponents mentioned at the start of the proof. Clearly this number is equal to $\left\lceil \frac{n}{p} \right\rceil + \left\lceil \frac{n}{p^2} \right\rceil + \left\lceil \frac{n}{p^3} \right\rceil + \ldots + \left\lceil \frac{n}{p^r} \right\rceil + \ldots$ as required.

(ii) We have

$$\left[\frac{n}{p}\right] = a_1 + a_2 p + \dots + a_k p^{k-1},$$

$$\left[\frac{n}{p^2}\right] = a_2 + a_3 p + \dots + a_k p^{k-2},$$

$$\vdots \quad \vdots \quad \vdots$$

$$\left[\frac{n}{p^{k-1}}\right] = a_{k-1} + a_k p,$$

$$\left[\frac{n}{p^k}\right] = a_k.$$

Hence

$$e = a_1 + a_2(1+p) + a_3(1+p+p^2) + \dots + a_k(1+p+\dots+p^{k-1})$$

= $(p-1)^{-1}(a_1(p-1) + a_2(p^2-1) + \dots + a_k(p^k-1))$
= $(p-1)^{-1}(n-a_0-a_1-a_2-\dots-a_k)$

as required.

(iii) If n > 3,

$$\begin{pmatrix} 2^n \\ 2^{n-1} - 2 \end{pmatrix} = \frac{(2^n)!}{(2^{n-1} - 2)!(2^{n-1} + 2)!}$$

by part (ii)

$$(2^{n})! = (2t+1)2^{2^{n}-1}$$
$$(2^{n-1}-2)! = (2u+1)2^{2^{n-1}-2-(n-2)}$$
$$(2^{n-1}+2)! = (2v+1)2^{2^{n-1}+2-1}$$

Hence the power of 2 exactly dividing this binomial coefficient is 2^e where

$$e = 2^{n} - 1 - (2^{n-1} - 2 - (n-2)) - (2^{n-1} + 2 - 2) = n - 1$$