QUESTION

Let p be a prime number and suppose that $n!=p^{e} s$ with $\operatorname{HCT}(p, s)=1$ where $n!$ is the product of the integers $1,2, \ldots, n$, as usual.
(i) Show that

$$
e=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots+\left[\frac{n}{p^{r}}\right]+\ldots
$$

where $[x]$ denotes the greatest integer less than of equal to x.
(ii) If $n=a_{0}+a_{1} p+a_{2} p^{2}+\ldots+a_{k} p^{k}$, where $0 \leq a_{i} \leq p-1$ for each i, prove that e in part (i) is given by

$$
e=(p-1)^{-1}\left(n-a_{0}-a_{1}-a_{2}-\ldots-a_{k}\right)
$$

(iii) Show that the largest power of 2 which will divide the binomial coefficient

$$
\binom{2^{t}}{2^{t-1}-2}
$$

is 2^{t-1}, if $t \geq 3$.

ANSWER

(i) Consider the numbers $1,2, \ldots, n$. Their product is n !. We can calculate e by taking each of these numbers, finding the exact power of p which divides it and then e is the sum of all these exponents. However, we are going to calculate this sum another way. Consider th following array:

$$
\begin{array}{ccccc}
p, & 2 p, & 3 p, & \ldots & {\left[\frac{n}{p}\right] p,} \\
p^{2}, & 2 p^{2}, & 3 p^{2}, & \ldots & {\left[\frac{n}{p^{2}}\right.} \\
p^{3}, & 2 p^{3}, & 3 p^{3}, & \ldots & {\left[\begin{array}{c}
\frac{n}{p^{3}}
\end{array}\right] p^{3},} \\
\vdots & \vdots & & & \\
p^{k}, & 2 p^{k}, & 3 p^{k}, & \ldots & {\left[\frac{n}{p^{k}}\right] p^{k}}
\end{array}
$$

The first row consists of all multiples of p less than or equal to n. The second row is all the multiples of p^{2} less than or equal to n and so on.

A number which is less than or equal to n and is exactly divisible by p^{s} will appear exactly s times in the array- once on each of the first s rows. Hence the number of numbers in this array is exactly the sum of the exponents mentioned at the start of the proof. Clearly this number is equal to $\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots+\left[\frac{n}{p^{r}}\right]+\ldots$ as required.
(ii) We have

$$
\begin{aligned}
{\left[\frac{n}{p}\right] } & =a_{1}+a_{2} p+\ldots+a_{k} p^{k-1} \\
{\left[\frac{n}{p^{2}}\right] } & =a_{2}+a_{3} p+\ldots+a_{k} p^{k-2} \\
\vdots & \vdots \vdots \\
{\left[\frac{n}{p^{k-1}}\right] } & =a_{k-1}+a_{k} p \\
{\left[\frac{n}{p^{k}}\right] } & =a_{k}
\end{aligned}
$$

Hence

$$
\begin{aligned}
e & =a_{1}+a_{2}(1+p)+a_{3}\left(1+p+p^{2}\right)+\ldots+a_{k}\left(1+p+\ldots+p^{k-1}\right) \\
& =(p-1)^{-1}\left(a_{1}(p-1)+a_{2}\left(p^{2}-1\right)+\ldots+a_{k}\left(p^{k}-1\right)\right) \\
& =(p-1)^{-1}\left(n-a_{0}-a_{1}-a_{2}-\ldots-a_{k}\right)
\end{aligned}
$$

as required.
(iii) If $n \geq 3$,

$$
\binom{2^{n}}{2^{n-1}-2}=\frac{\left(2^{n}\right)!}{\left(2^{n-1}-2\right)!\left(2^{n-1}+2\right)!}
$$

by part (ii)

$$
\begin{aligned}
\left(2^{n}\right)! & =(2 t+1) 2^{2^{n}-1} \\
\left(2^{n-1}-2\right)! & =(2 u+1) 2^{2^{n-1}-2-(n-2)} \\
\left(2^{n-1}+2\right)! & =(2 v+1) 2^{2^{n-1}+2-1}
\end{aligned}
$$

Hence the power of 2 exactly dividing this binomial coefficient is 2^{e} where

$$
e=2^{n}-1-\left(2^{n-1}-2-(n-2)\right)-\left(2^{n-1}+2-2\right)=n-1
$$

