QUESTION

(i) Give, without proof, a formula for Euler's function, $\phi(n)$, in terms of the prime power factorisation of n.
(ii) Let m and n be positive integers such that $\operatorname{HCF}(m, n)=d$. Show that

$$
\phi(d) \phi(m n)=\phi(m) \phi(n) d .
$$

(iii) Hence show that

$$
\phi(m n) \leq \phi(m) \phi(n)
$$

with equality if and only if $\operatorname{HCF}(m, n)=1$.
(iv) Define what is meant by the multiplicative order of a congruence class, $[x] \in U_{m}$, where U_{m} denotes the group of units $\bmod (m)$.
(v) Suppose that there exists an integer, x, such that $\operatorname{HCF}(x, m)=1$ and the order of $[x]$ in U_{m} is equal to $m-1$. Using Euler's Theorem, or otherwise, show that m is prime.

ANSWER

(i) If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$ where the p_{i} 's are distinct primes and the $a_{i} \geq 1$ are integers then

$$
\phi(n)=p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} \ldots p_{k}^{a_{k}-1} \prod_{j=1}^{k}\left(p_{j}-1\right)
$$

(ii) To prove this one we change notation a little. Let p_{1}, \ldots, p_{k} denote the set of distinct primes which appear to a strictly positive exponent in the prime power factorisation of at least one of m or n. Hence we may write

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}, m=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{k}^{b_{k}}
$$

with each $a_{i} \geq 0$ and $b_{i} \geq 0$ but $a_{i}+b_{i}>0$ for each i. In this case

$$
d=\prod_{i=1}^{k} p_{i}^{\min \left(a_{i}, b_{i}\right)}
$$

Hence the left hand side is equal to

$$
\left(\prod_{i=1}^{k} p_{i}^{\min \left(a_{i}, b_{i}\right)-1}\left(p_{i}-1\right)\right)\left(\prod_{j=1}^{k} p_{j}^{a_{j}+b_{j}-1}\left(p_{j}-1\right)\right)
$$

where in the first factor only i 's with $\min \left(a_{i}, b_{i}\right) \geq 1$ appear.
On the right hand side we have

$$
\left(\prod_{i=1}^{k} p_{i}^{\min \left(a_{i}, b_{i}\right)}\right)\left(\prod_{u=1}^{k} p_{u}^{a_{u}-1}\left(p_{u}-1\right)\right)\left(\prod_{j=1}^{k} p_{j}^{b_{j}-1}\left(p_{j}-1\right)\right)
$$

where in second factor only u 's with $a_{u} \geq 1$ appear and in the third factor only j 's with $b_{j} \geq 1$ appear.
Now look at the occurrence of p_{i} and $\left(p_{i}-1\right)$'s on both sides. On the left we find

$$
\begin{array}{ll}
p_{i}^{\min \left(a_{i}, b_{i}\right)-1}\left(p_{i}-1\right) p_{i}^{a_{i}+b_{i}-1}\left(p_{i}-1\right) & \text { if } \min \left(a_{i}, b_{i}\right) \geq 1 \\
p_{i}^{a_{i}+b_{i}-1}\left(p_{i}-1\right) & \text { if } \min \left(a_{i}, b_{i}\right)=0
\end{array}
$$

On the right we find

$$
\begin{array}{ll}
p_{i}^{\min \left(a_{i}, b_{i}\right)} p_{i}^{a_{i}-1}\left(p_{i}-1\right) p_{i}^{b_{i}-1}\left(p_{i}-1\right) & \text { if } a_{i} \geq 1 \text { and } b_{i} \geq 1, \\
p_{i}^{\min \left(a_{i}, b_{i}\right)} p_{i}^{b_{i}-1}\left(p_{i}-1\right) & \text { if } a_{1} 0 \text { and } b_{1} \geq 1, \\
p_{i}^{\min \left(a_{i}, b_{i}\right)} p_{i}^{a_{i}-1}\left(p_{i}-1\right) & \text { if } a_{i} \geq 1 \text { and } b_{i}=0 .
\end{array}
$$

These expressions are equal.
(iii) If $d>1$ then $\phi(d)<d$ by the formula of (i) while $\phi(1)=1$.
(iv) The order of a congruence class $[x] \in U_{m}$ is the least positive integer, k, such that $x^{k} \equiv 1 \bmod (m)$.
(v) By Euler's Theorem we know that $x^{\phi(m)} \equiv 1 \bmod (m)$ and therefore that the order of x divides $\phi(m)$. Hence m is such that $(m-1) \mid \phi(m)$. Since $\phi(m)<m$ for $m>1$ we must have $\phi(m)=m-1$ which implies that m is prime, by the formula of (i).

