QUESTION

- (i) Give, without proof, a formula for Euler's function, $\phi(n)$, in terms of the prime power factorisation of n.
- (ii) Let m and n be positive integers such that HCF(m, n) = d. Show that

$$\phi(d)\phi(mn) = \phi(m)\phi(n)d.$$

(iii) Hence show that

$$\phi(mn) \le \phi(m)\phi(n)$$

with equality if and only if HCF(m, n) = 1.

- (iv) Define what is meant by the multiplicative order of a congruence class, $[x] \in U_m$, where U_m denotes the group of units mod (m).
- (v) Suppose that there exists an integer, x, such that HCF(x, m) = 1 and the order of [x] in U_m is equal to m 1. Using Euler's Theorem, or otherwise, show that m is prime.

ANSWER

(i) If $n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}$ where the p_i 's are distinct primes and the $a_i \ge 1$ are integers then

$$\phi(n) = p_1^{a_1 - 1} p_2^{a_2 - 1} \dots p_k^{a_k - 1} \prod_{j=1}^k (p_j - 1)$$

(ii) To prove this one we change notation a little. Let p_1, \ldots, p_k denote the set of distinct primes which appear to a strictly positive exponent in the prime power factorisation of at least one of m or n. Hence we may write

$$n = p_1^{a_1} p_2^{a_2} \dots p_k^{a_k}, m = p_1^{b_1} p_2^{b_2} \dots p_k^{b_k}$$

with each $a_i \geq 0$ and $b_i \geq 0$ but $a_i + b_i > 0$ for each i. In this case

$$d = \prod_{i=1}^{k} p_i^{\min(a_i, b_i)}$$

Hence the left hand side is equal to

$$\left(\prod_{i=1}^{k} p_i^{\min(a_i,b_i)-1} (p_i - 1)\right) \left(\prod_{j=1}^{k} p_j^{a_j + b_j - 1} (p_j - 1)\right)$$

where in the first factor only i's with $min(a_i, b_i) \ge 1$ appear.

On the right hand side we have

$$\left(\prod_{i=1}^{k} p_i^{\min(a_i,b_i)}\right) \left(\prod_{u=1}^{k} p_u^{a_u-1}(p_u-1)\right) \left(\prod_{j=1}^{k} p_j^{b_j-1}(p_j-1)\right)$$

where in second factor only u's with $a_u \geq 1$ appear and in the third factor only j's with $b_j \geq 1$ appear.

Now look at the occurrence of p_i and $(p_i - 1)$'s on both sides. On the left we find

$$p_i^{\min(a_i,b_i)-1}(p_i-1)p_i^{a_i+b_i-1}(p_i-1) \quad \text{if } \min(a_i,b_i) \ge 1, \\ p_i^{a_i+b_i-1}(p_i-1) \quad \text{if } \min(a_i,b_i) = 0$$

On the right we find

$$p_i^{\min(a_i,b_i)} p_i^{a_i-1}(p_i-1) p_i^{b_i-1}(p_i-1) \quad \text{if } a_i \ge 1 \text{ and } b_i \ge 1,$$

$$p_i^{\min(a_i,b_i)} p_i^{b_i-1}(p_i-1) \quad \text{if } a_1 = 0 \text{ and } b_1 \ge 1,$$

$$p_i^{\min(a_i,b_i)} p_i^{a_i-1}(p_i-1) \quad \text{if } a_i \ge 1 \text{ and } b_i = 0.$$

These expressions are equal.

- (iii) If d > 1 then $\phi(d) < d$ by the formula of (i) while $\phi(1) = 1$.
- (iv) The order of a congruence class $[x] \in U_m$ is the least positive integer, k, such that $x^k \equiv 1 \mod (m)$.
- (v) By Euler's Theorem we know that $x^{\phi(m)} \equiv 1 \mod (m)$ and therefore that the order of x divides $\phi(m)$. Hence m is such that $(m-1)|\phi(m)$. Since $\phi(m) < m$ for m > 1 we must have $\phi(m) = m 1$ which implies that m is prime, by the formula of (i).