QUESTION

(i) Explaining your reasoning carefully, prove that both 311 and 317 are primes.
(ii) Stating clearly the theoretical results you have used, calculate the Legendre symbol

$$
\left(\frac{317}{311}\right) .
$$

(Hint: You may assume that, if p is an odd prime, 2 is a square \bmod (p) if and only if $p \equiv \pm 1 \bmod (8)$.)

ANSWER

(i) Since $18^{2}=324, \sqrt{311}$ and $\sqrt{317}$ are both strictly smaller than 18 . Hence, by Eratosthenes observation, we have only to verify that no prime among $2,3,5,7,11,13,17$ divides 311 or 317 . Clearly 2 does not divide any odd number. Since $3+1+1=5$ and $3+1+7=11$ are not divisible by 3,3 does not divide either number. Neither ends in 0 or 5 so 5 does not divide either number. Since $7 \times 45=315 \mathrm{w}$ see that 7 does not divide either number. Since $3-1+1=3$ and $3-1+7=9$ are not divisible by 11,11 does not divide either number. Finally, since $17 \times 19=323$, 17 does not divide either number.
(ii) The following succession of Legender symbols are equal:

$$
\left(\frac{317}{311}\right)=\left(\frac{6}{311}\right)
$$

since $317 \equiv 6 \bmod (311)$. Then

$$
\left(\frac{6}{311}\right)=\left(\frac{2}{311}\right)\left(\frac{3}{311}\right)
$$

by multiplicativity of the Legendre symbol in the top variable.
Next

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

for any odd prime. When $p=311=(8 \times 38)+7$ this is $(-1)^{\left(7^{2}-1\right) / 8}=$ $(-1)^{6}=1$. Hence we must calculate

$$
\left(\frac{3}{311}\right)=\left(\frac{311}{3}\right)(-1)^{(3-1)(311-1) / 4}
$$

by quadratic reciprocity. However

$$
\left(\frac{311}{3}\right)(-1)^{(3-1)(311-1) / 4}=-\left(\frac{2}{3}\right)=-(-1)=1 .
$$

