QUESTION

Let a, b, c denote positive integers.
(i) Define the least common multiple, $\operatorname{LCM}(a, b)$, and the highest common factor, $\operatorname{HCF}(a, b)$, of a and b.
(ii) Prove the formula

$$
\operatorname{LCM}(a, b)=\frac{a b}{\operatorname{HCF}(a, b)}
$$

(iii) If we define $\operatorname{LCM}(a, b, c)$ and $\operatorname{HCF}(a, b, c)$ in a similar manner which of the following two formulae is correct?

$$
L C M(a, b, c)=\frac{a b c}{N C F(a, b, c)}
$$

or

$$
\operatorname{LCM}(a, b, c)=\frac{a b c H C F(a, b, c)}{\operatorname{HCF}(a, b) H C F(a, c) H C F(b, c)} .
$$

Prove it. (Hint: In (iii) you may assume that every positive integer has a unique factorisation into prime powers.)

ANSWER

(i) $\operatorname{LCM}(a, b)$ is the (positive) integer, e, such that $a \mid e(a$ divides $e)$ and $b \mid e$ and if f is any other (positive) integer multiple of both a and b then $e \leq f$.
$\operatorname{HCF}(a, b)$ is the (positive) integer, d, such that $d \mid a$ and $d \mid b$ and if f is any other (positive) integer dividing both a and b then $f \mid d$ (or, as turns out to be equivilent, $f \leq d$.)
(ii) If $\operatorname{HCF}(a, b)=d$ there exist integers, n and m, such that $a===m d, b=$ $n d$. Hence $\frac{a b}{d}=m n d=m b=n a$ which shows that $\frac{a b}{d}$ is a common multiple. Now suppose that f is another common multiple. Since the $\operatorname{HCF}\left(\frac{a}{d}, \frac{b}{d}\right)=1$ there exist integers, u and v, such that $1=u\left(\frac{a}{d}\right)+$ $v\left(\frac{b}{d}\right)$. Therefore

$$
\begin{aligned}
f & =f u\left(\frac{a}{d}\right)+f v\left(\frac{b}{d}\right)=f u m+f v n=\left(\frac{f}{n d}\right) u m n d+\left(\frac{f}{m d}\right) v m n d \\
& =\left(\left(\frac{f}{b}\right) u+\left(\frac{f}{a}\right) u\right) m n d \geq m n d
\end{aligned}
$$

because $\left(\left(\frac{f}{b}\right) u+\left(\frac{f}{a}\right) v\right)$ is a n integer (necessarily positive) and so $1 \leq\left(\left(\frac{f}{b}\right) u+\left(\frac{f}{a}\right) v\right)$.
(iii) The first formula is wrong, because if we set $a=b=c=2$ then $\operatorname{LCM}(2,2,2)=2$ but $\frac{2^{3}}{\operatorname{HCF}(2,2,2)}=4$. Therefore we must prove the second formula.

Let p_{1}, \ldots, p_{k} be distinct primes and write

$$
\begin{aligned}
a & =p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}} \\
b & =p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{k}^{\beta_{k}} \\
c & =p_{1}^{\gamma_{1}} P_{2}^{\gamma_{2}} \ldots p_{k}^{\gamma_{k}}
\end{aligned}
$$

with the $0 \leq \alpha_{i}, 0 \leq \beta_{i}, 0 \leq \gamma_{i}$ for all $1 \leq i \leq k$. With this notation we have

$$
\begin{aligned}
a b c & =\prod_{i=1}^{k} p_{i}^{\alpha_{i}+\beta_{i}+\gamma_{i}}, \\
H C F(a, b) & =\prod_{i=1}^{k} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)} \\
H C F(a, c) & =\prod_{i=1}^{k} p_{i}^{\min \left(\alpha_{i}, \gamma_{i}\right)}, \\
H C F(b, c) & =\prod_{i=1}^{k} p_{i}^{\min \left(\beta_{i}, \gamma_{i}\right)} \\
H C F(a, b, c) & =\prod_{i=1}^{k} p_{i}^{\min \left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)} .
\end{aligned}
$$

Hence the right hand expression is equal to

$$
\frac{\prod_{i=1}^{k} p_{i}^{\alpha_{i}+\beta_{i}+\gamma_{i}} p_{i}^{\min \left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)}}{\prod_{i=1}^{k} p_{i}^{\min \left(\alpha_{i}, \beta_{i}\right)} p_{i}^{\min \left(\alpha_{i}, \gamma_{i}\right)} p_{i}^{\min \left(\beta_{i}, \gamma_{i}\right)}} .
$$

If, for example, $\alpha_{i} \leq \beta_{i} \leq \gamma_{i}$ then

$$
\alpha_{i}+\beta_{i}+\gamma_{i}+\min \left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)-\min \left(\alpha_{i}, \beta_{i}\right)-\min \left(\alpha_{i}, \gamma_{i}\right)-\min \left(\beta_{i}, \gamma_{i}\right)
$$

is equal to $\left.\alpha_{i}+\beta_{i}+\gamma_{i}+\alpha_{i}-\alpha_{i}-\alpha_{i}-\beta_{i}=\gamma_{i}=\max \left(\alpha_{i}, \beta\right) i, \gamma_{i}\right)$. Therefore the right hand expression equals

$$
\prod_{i=1}^{k} p_{i}^{\max \left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)}=\operatorname{LCM}(a, b, c)
$$

as required.

