QUESTION

For each integer, $n \geq 0$, define $h_{n}=2^{2^{n}}+1$.
(i) Evaluate $\left.h_{0}, h\right) 1, h_{2}, h_{3}$.
(ii) Show that $\operatorname{HCF}\left(h_{n}, h_{n+t}\right)=1$ for all $n \geq 0$ and all $t \geq 1$. (Hint: Consider $h_{n+t}-2$.)
(iii) Use (ii) to give a proof that there exist infinitely many prime numbers.
(Hint: you may assume that every positive integer has a unique factorisation into prime powers.)
ANSWER
(i) We have

$$
\begin{aligned}
& h_{0}=2^{2^{0}}+1=2^{1}+1=3 \\
& h_{1}=2^{2^{1}}+1=2^{2}+1=5 \\
& h_{2}=2^{2^{2}}+1=2^{4}+1=17 \\
& h_{3}=2^{2^{3}}+1=2^{8}+1=257
\end{aligned}
$$

(ii) We have

$$
h_{n}+1-2=2^{2^{n+1}}+1-2=2^{2^{n} 2^{1}}-2=\left(2^{2^{n}}\right)^{2^{t}}-1=\left(h_{n}-1\right)^{2^{t}}-1
$$

which is divisible by h_{n}, by the binomial theorem. Therefore any common factor of h_{n} and h_{n+1} must divide 2 . Since h_{n} is odd $\operatorname{HCF}\left(h_{n}, h_{n+1}\right)=$ 2 is impossible.
(iii) Suppose that there are only finitely many distinct primes, $p_{1}, p_{2}, \ldots p_{k}$. Let P_{n} denote the set of primes which appear to a strictly positive exponent in the prime power factorisation of any one of $h_{0}, h_{1} \ldots, h_{n}$. By (ii) no element of P_{m} can appear in the prime factorisation of h_{m+1} so that $\left|P_{n}\right| \geq n$ which is impossible for $n>k$.

