QUESTION Show that $u(x, y)=2 x-x^{3}+3 x y^{2}$ is harmonic. Find a conjugate harmonic function $v(x, y)$ and identify the corresponding analytic function $u+i v$.
ANSWER Easy to show $u_{x x}+u_{y y}=0$, so u is harmonic. Let v be the conjugate harmonic function. Then

$$
v_{y}=u_{x}=2-3 x^{2}+3 y^{2}
$$

Thus

$$
v(x, y)=2 y-3 x^{2} y+y^{3}+\phi(x) .
$$

Now $v_{x}=-6 x y+\phi^{\prime}(x)=-u_{y}=-6 x y$. Thus $\phi(x)=$ constant, so

$$
v(x, y)=2 y-3 x^{2} y+y^{3}+\text { constant }
$$

and $u+i v=2 z-z^{3}+i c$, where c is a real constant. (Note that we have expressed this in terms of $z=x+i y$.)

