QUESTION Using the usual expansion for $\sin(A+B)$ (how would you prove this for A,B complex?) prove that if z = x + iy then

$$\sin(x+iy) = \sin x \cosh y + i \cos x \sinh y.$$

ANSWER Usual expansion for $\sin(a+b)$ is

$$\sin(a+b) = \sin A \cos B + \sin B \cos A$$

(This may be proved for complex A,B by expressing both sides in terms of the exponential function.) Now $\cos iy = \cosh y, \sin iy = i \sinh y$, giving the result.