Question

Two fair dice are thrown. What is the probability of obtaining:
(a) A total of exactly 7 ?
(b) A total of 7 or more?
(c) A total of 7 or less?

Answer
(a) To obtain 7 exactly, one needs the following pairs
$\{1,6\},\{6,1\},\{2,5\},\{5,2\},\{3,4\},\{4,3\}$
each possibility has a probability $\frac{1}{36}=\left(\frac{1}{6}\right) \times\left(\frac{1}{6}\right)$
There are six possibilities, six elements in the sample space
Hence $p\left(a_{1}+a_{2}=7\right)=\frac{6}{36}=\frac{1}{6}$
(b)

> To obtain 12 need $\quad\{6,6\} \quad p=\frac{1}{36}$
> 11 need $\quad\{6,5\},\{5,6\} \quad p=\frac{1}{18}$
> 10 need $\quad\{6,4\},\{4,6\},\{5,5\} \quad p=\frac{1}{12}$
> 9 need $\quad\{6,3\},\{3,6\},\{4,5\},\{5,4\} \quad p=\frac{4}{36}=\frac{1}{9}$
> 8 need $\quad\{6,2\},\{2,6\},\{3,5\},\{5,3\},\{4,4\} \quad p=\frac{5}{36}$

Hence $p\left(a_{1}+a_{2} \geq 7\right)=\frac{1}{36}(1+2+3+4+5+6)=\frac{21}{36}=\frac{7}{12}$
(c)

$$
\begin{aligned}
p\left(a_{1}+a_{2} \leq 7\right) & =1-p\left(a_{1}+a_{2}>7\right) \\
& =1-p\left(a_{1}+a_{2} \geq 7\right)+p\left(a_{1}+a_{2}=7\right) \\
& =1-\frac{7}{12}+\frac{1}{6} \\
& =\frac{7}{12}
\end{aligned}
$$

