Question

In each case (i), (ii) find the discriminant $\Delta \subset \mathbb{R}^2$ for the map $F : \mathbb{R}^3 \to \mathbb{R}^2$. Describe the geometric form of the set $F^{-1}(s) \subset \mathbb{R}^3$ for s belonging to each connected region of the complement of Δ in \mathbb{R}^2 , and also for s belonging to Δ .

(i)
$$F(x_1, x_2, x_3) = (x_1 - (x_2^2 + x_3^2), 2x_1)$$

(ii)
$$F(x_1, x_2, x_3) = (x_1^2 - x_2^2 - x_3^2, x_1^2 + x_2^2 + x_3^2).$$

[Hint: in (ii) let $x_2^2 + x_3^2 = r^2$.] Answer

(i) $DF(x) = \begin{pmatrix} 1 & -2x_2 & -2x_3 \\ 2 & 0 & 0 \end{pmatrix}$ which has rank < 2 if and only if $x_2 = x_3 = 0$, i.e singular set Σ_1 is x_1 -axis.

We have $F(x_1,0,0)=(x_1,2x_1)$ so discriminant Δ is the line $y_2=2y_1$.

The set $F^{-1}(a,b)$ is the intersection of the line $x_1 = \frac{b}{2}$ with the locus $x_2^2 + x_3^2 = \frac{b}{2} - a$: cylinder if b > 2a, empty if b < 2a.

Thus $F^{-1}(a,b)$ is a circle if b>2a, empty if b<2a. Also one point if b=2a.

(ii)
$$DF(x) = \begin{pmatrix} 2x_1 & -2x_2 & -2x_3 \\ 2x_1 & 2x_2 & 2x_3 \end{pmatrix}$$
: rank < 2 when $x_1 = 0$ or $x_2 = x_3 = 0$.

We have $F(0,x_2,x_3)=(x_2^2+x_3^2)(-1,1)$ and $F(x_1,0,0)=x_1^2(1,1)$. So Δ is two half-lines.

The set $F^{-1}(a,b)$ is the intersection of the sphere $x_1^2+x_2^2+x_3^2=b$ and the hyperboloid $x_1^2-x_2^2-x_3^2=a$.

The 'sphere' is empty if b < 0, radius \sqrt{b} otherwise. The hyperboloid has two sheets if a > 0, 1 sheet if a < 0 (cone when a = 0).

The nearest points of the hyperboloid to the origin are at distance $\sqrt{|a|}$.

Hence
$$F^{-1}(a,b): \begin{array}{c} b < |a| : \mathbf{empty} \\ b > |a| : \mathbf{two \ circles} \end{array} \right\}$$

and for
$$(a,b) \in \Delta$$
, $F^{-1}(a,b) = \left\{ \begin{array}{ll} \text{two points} & (\pm |a|,0,0) \text{ if } a > 0 \\ \text{circle} & \text{if } a < 0 \end{array} \right\}$.