In each case (i), (ii) find the discriminant $\Delta \subset \mathbf{R}^{2}$ for the map $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$. Describe the geometric form of the set $F^{-1}(s) \subset \mathbf{R}^{3}$ for s belonging to each connected region of the complement of Δ in \mathbf{R}^{2}, and also for s belonging to Δ.
(i) $F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-\left(x_{2}^{2}+x_{3}^{2}\right), 2 x_{1}\right)$
(ii) $F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2}-x_{2}^{2}-x_{3}^{2}, x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$.
[Hint: in (ii) let $x_{2}^{2}+x_{3}^{2}=r^{2}$.]
Answer
(i) $D F(x)=\left(\begin{array}{ccc}1 & -2 x_{2} & -2 x_{3} \\ 2 & 0 & 0\end{array}\right)$ which has rank <2 if and only if $x_{2}=x_{3}=0$, i.e singular set Σ_{1} is x_{1}-axis.
We have $F\left(x_{1}, 0,0\right)=\left(x_{1}, 2 x_{1}\right)$ so discriminant Δ is the line $y_{2}=2 y_{1}$.
The set $F^{-1}(a, b)$ is the intersection of the line $x_{1}=\frac{b}{2}$ with the locus $x_{2}^{2}+x_{3}^{2}=$ $\frac{b}{2}-a$: cylinder if $b>2 a$, empty if $b<2 a$.
Thus $F^{-1}(a, b)$ is a circle if $b>2 a$, empty if $b<2 a$. Also one point if $b=2 a$.
(ii) $D F(x)=\left(\begin{array}{ccc}2 x_{1} & -2 x_{2} & -2 x_{3} \\ 2 x_{1} & 2 x_{2} & 2 x_{3}\end{array}\right):$ rank <2 when $x_{1}=0$ or $x_{2}=x_{3}=0$.

We have $F\left(0, x_{2}, x_{3}\right)=\left(x_{2}^{2}+x_{3}^{2}\right)(-1,1)$ and $F\left(x_{1}, 0,0\right)=x_{1}^{2}(1,1)$. So Δ is two half-lines.

The set $F^{-1}(a, b)$ is the intersection of the sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=b$ and the hyperboloid $x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=a$.
The 'sphere' is empty if $b<0$, radius \sqrt{b} otherwise. The hyperboloid has two sheets if $a>0, \mathbf{1}$ sheet if $a<0$ (cone when $a=0$).
The nearest points of the hyperboloid to the origin are at distance $\sqrt{|a|}$.
Hence $\left.F^{-1}(a, b): \begin{array}{l}b<|a| \quad: \text { empty } \\ b>|a|: \text { two circles }\end{array}\right\}$
and for $(a, b) \in \Delta, F^{-1}(a, b)=\left\{\begin{array}{cc}\text { two points } & (\pm|a|, 0,0) \text { if } a>0 \\ \text { circle } & \text { if } a<0\end{array}\right)$.

